IN THE UNITED STATES DISTRICT COURT FOR THE NORTHERN DISTRICT OF ILLINOIS EASTERN DIVISION

CHICAGO TEACHERS UNION, LOCAL 1, AMERICAN FEDERATION OF TEACHERS, AFL-CIO; DONALD L. GARRETT JR.; ROBERT GREEN and VIVONELL BROWN, JR., individually and on behalf of all similarly situated persons,

Plaintiffs,

v.

BOARD OF EDUCATION OF THE CITY OF CHICAGO, a body politic and corporate,

Defendant.

Case No. 12 C 10311

Judge Sara L. Ellis Magistrate Judge Young Kim

FED. R. CIV. P. RULE 26(a)(2)(B) REPORT OF DR. BRUCE BAKER

1 2	Racially Disparate Impact of Chicago School Turnarounds on Black and Hispanic Teachers	l
2	Bruce D. Baker	
4	Rutgers University	
5		
6 7	Contents	
8	I. INTRODUCTION & QUALIFICATIONS	3
9	II. SUMMARY OF OPINIONS	4
10	III. ANALYSES	5
11	Introduction	5
12	1.0 The connection between school student population racial composition and teacher race	5
13	1.1 Black and/or Hispanic teachers work in schools serving Black and/or Hispanic students	5
14	1.2 Turnarounds are leading to a whitening of the teacher workforce in designated schools	7
15	2.0 CPS school accountability measures do not attempt to measure employee effectiveness	12
16	2.1 Types of measures & indicators in school accountability systems	12
17 18	2.2 Measures used by Chicago Public Schools for determining school and employee consequences	19
19	3.0 Measures unrelated to job performance are determining employment consequences	28
20	3.1 Measures used by CPS for determining school ratings are racially disparate	28
21	3.2 Student race remains a determinant of accountability status	30
22	IV. ATTACHMENTS	35
23	A. Curriculum Vitae of Bruce D. Baker (2-10-17)	35
24	B. Stata Log of School Level Analyses (bbaker_cps_schlacctblty_2.10.17)	35
25	C. Stata Log of Teacher/Student Race Analyses (bbaker_stu_teacher_link_2.10.17)	35
26	D. Materials considered in preparation of this report	35

1 I. INTRODUCTION & QUALIFICATIONS

2

3 I am a Professor in the Department of Educational Theory, Policy and Administration at Rutgers, The

- 4 State University of New Jersey in New Brunswick, New Jersey.
- 5 For the past 20 years, since completing my doctorate at Teachers College, Columbia University (1997), I
- 6 have engaged in research on education policy, school finance, teacher and administrator labor markets,
- 7 and applied quantitative analysis.
- 8 I have published numerous peer reviewed empirical studies on the above topics and have also published
- 9 law review articles on topics including racially disparate impact of state school finance policies and
- 10 racially disparate impact related to measures employed in teacher evaluation systems.¹
- 11 The vast majority of my peer reviewed research has involved applied quantitative analysis and
- 12 econometric methods, typically using large national data sets and data from state administrative data
- 13 systems, including personnel files.² I have also taught courses in applied data analysis, large data set
- 14 management and analysis, at both the University of Kansas and Rutgers University, and serve on the
- editorial boards of the Journal of Education Finance and Education Finance and Policy where I am
- 16 typically called upon to review quantitative submissions.
- 17 I have been retained by Robin Potter and Associates and the Edwin F. Mandel Legal Aid Clinic of the
- 18 University of Chicago Law School to provide expert analysis and opinion in the case of Chicago Teachers
- 19 Union v. Chicago Board of Education (No. 12 C 10311 (N.D. Ill.)). I am being compensated at an hourly
- 20 rate of \$500.
- 21
- 22

¹ Green III, P. C., Baker, B. D., & Oluwole, J. (2012). The legal and policy implications of value-added teacher assessment policies. *BYU Educ. & LJ*, 1.

Baker, B. D., Oluwole, J., & Green III, P. C. (2013). The legal consequences of mandating high stakes decisions based on low quality information: Teacher evaluation in the race-to-the-top era. *Education Policy Analysis Archives*, 21(5).

Weber, M., & Oluwole, J. (2014). "One Newark's" Racially Disparate Impact on Teachers. In *New Jersey Education Policy* Forum.

² Clifford, M., Condon, C., Greenberg, A., Williams, R., Gerdeman, R. D., Fetters, J., & Baker, B. (2012). A Descriptive Analysis of the Principal Workforce in Wisconsin. Issues & Answers. REL 2012-No. 135. *Regional Educational Laboratory Midwest.*

Fuller, E., Young, M., & Baker, B. D. (2011). Do principal preparation programs influence student achievement through the building of teacher-team qualifications by the principal? An exploratory analysis. *Educational Administration Quarterly*, 47(1), 173-216.

Baker, B. D., Punswick, E., & Belt, C. (2010). School leadership stability, principal moves, and departures: Evidence from Missouri. *Educational Administration Quarterly*, *46*(4), 523-557.

1 II. SUMMARY OF OPINIONS

In the report that follows, I provide a critique of common elements of school rating and accountability systems, a summary of the elements, design and application of the Chicago Public Schools performance rating system, and empirical analyses of publicly accessible extant data to validate the opinions below.

- 6 My findings and opinions are as follows: 7 The racial composition of student enrollments in schools is strongly associated with the racial 8 composition of the teacher workforce in schools. 9 Thus, when racially biased indicators are used to sanction schools that serve black, or 0 black and Hispanic students, those same indicators disparately affect black, or black and 10 11 Hispanic teachers. 12 Assignment to turnaround status has led to a *whitening* of the teacher workforce in 0 affected schools. 13 14 • Many measures and indicators frequently used in school rating systems are not designed to isolate teacher or administrator effectiveness - That is, they have no manifest relationship to the 15 employment of teachers or administrators. 16 Many of those measures (test scores, attendance rates, graduate and persistence rates) are 17 0 18 well understood to be highly associated with or predicted by student background characteristics, including race, economic status and the intersection of the two. 19 20 The Chicago Public Schools' indicator system used for rating school quality and imposing • sanctions on schools, resulting in employment consequences, relies primarily on measures which 21 22 make no attempt (on their face) to isolate employee effectiveness. 23 0 The existence and design of lesser weighted components like the value-added model is 24 evidence that district officials are aware that the dominant measures are insufficient for 25 the purpose for which they are being used. • Changes made to the school rating system beginning in 2014 provide further 26 27 acknowledgement that district officials are aware that measures used previously were 28 insufficient, but changes fail to resolve these problems. 29 As could easily be predicted, student performance level measures which dominate the point • calculations for school ratings are strongly associated with student race. 30 31 By contrast, measures which at least attempt to isolate (though insufficiently) school 0 effects on student outcomes, are substantively less racially disparate. 32 33 The likelihoods that a school a) receives low point totals, b) is assigned "level 3" status 0 34 and c) is placed on probation are each significantly associated with the racial composition 35 of student enrollments.
- These are the obvious results of a system built on measures of student performance levels inappropriately applied to determine school effectiveness and employment consequences, in a context that remains highly segregated for both teachers and students on the basis of race and income. The metrics used for determining both employee and school effectiveness are both inadequate and discriminatory.

1 III. ANALYSES

2 Introduction

3

Plaintiffs in the case allege that the School Board's policy for identifying schools for turnaround, thus
displacing teachers, was racially discriminatory. The School Board's primary expert witness contends that
turnaround decisions were made only on the basis of the school performance rating system. In this report,
I show that even if that is the case, the decisions themselves remain discriminatory because the
performance rating system itself is racially biased. Analyses herein focus generally on turnarounds
occurring between 2009 and 2012 due to time constraints on compiling additional years of data.

In the Chicago Public School system, there exists a strong correlation between the racial makeup of the student population across schools and the racial makeup of the teacher workforce across schools. The school performance rating systems which have been used over time rely on measures, indicators and point tallies which are dominated by student test scores and other known racially biased measures.

Furthermore, I explain in this report that it is well understood that the measures used for rating schools have two major flaws:

- First, they are insufficient to reveal teacher competency/performance, and, as shown in this report, there is reason to believe that CPS officials know this to be the case;
- Second, the standardized tests on which the points are based produce racially biased results.

This means that schools that serve primarily black students will disproportionately be subject to low performance reviews and thus eligibility for turnaround. The correlation between black students and black teachers, furthermore, means that the faculty members at these schools will disproportionately be black.

23

1.0 The connection between school student population racial composition and teacher race

26

In this section, I use data from the statewide staffing reports (Teacher Service Record and later Educator Employment file) coupled with school enrollment demographics to illustrate the relationship between student race and teacher race, largely a product of the racial and economic segregation of the City of Chicago and its public school system. I have used publicly available (downloadable from ISBE web site) data from ISBE for purposes of these analyses such that they can be easily replicated.

32 33

1.1 Black and/or Hispanic teachers work in schools serving Black and/or Hispanic students

34

Table 1 provides summaries of the student population % black for teachers who are "not black" and teachers who are black. Black certified staff are in schools which, on average, have student populations that are 85% black. Non-black certified employees are employed in schools that, on average, have student populations which are just over 30% black and declining over time.

year	Certified Employee is Not Black	Certified Employee is Black
2009	36.02	85.15
2010	34.91	84.98
2011	34.01	85.06
2012	33.54	85.50
2013	32.37	85.63
2014	32.14	83.89
2015	31.53	83.67
	nployment Files: <u>http://www.isbe.net/research</u> ollment Files: <u>http://www.isbe.net/research/htm</u>	

1 Table 1. Black teachers work in schools with disproportionately black student populations

2

Table 2 shows the student enrollment composition for teachers who are a) neither black nor Hispanic, b) either black or Hispanic. Non-black/Hispanic teachers tend to work in schools marginally below 90% black and Hispanic enrollment. Black and Hispanic teachers tend to work in schools which

6 serve approximately 100% black and Hispanic student populations.

- 7 Table 2. Black and Hispanic teachers work in schools with disproportionately black and Hispanic
- 8 student populations

year Certified Employee is Neither Certified Employee is Black nor Hispanic Black or Hispanic					
2009	91.12	99.98			
2010	87.93	99.62			
2011	87.17	99.30			
2012	87.53	99.67			
2013	89.48	100			
2014	85.89	99.06			
2015 85.92 99.08					
	Employment Files: <u>http://www.isbe.net/resear</u> nrollment Files: <u>http://www.isbe.net/research/h</u>	· ·			

9

Table 3 displays the odds ratios (from logistic regression) of the likelihood that a teacher is "black" given the student population characteristics. For each year of the data, a 1% increase in student population %

12 black is associated with a 3% increase in likelihood that a teacher is black.

ieni 700iuen increuses, ine iineiinoou inui u ieuene					
Coeff	School Enrollment	Intercept			
	% Black				
Odds Ratio	1.030***	0.077***			
SE	0.000	0.002			
Odds Ratio	1.030***	0.072***			
SE	0.000	0.002			
Odds Ratio	1.031***	0.058***			
SE	0.000	0.002			
Odds Ratio	1.031***	0.055***			
SE	0.000	0.002			
Odds Ratio	1.033***	0.050***			
SE	0.000	0.002			
Odds Ratio	1.033***	0.049***			
SE	0.000	0.002			
note: *** p<0.01, ** p<0.05, * p<0.1					
	Coeff Odds Ratio SE Odds Ratio SE Odds Ratio SE Odds Ratio SE Odds Ratio SE Odds Ratio	Coeff School Enrollment % Black Odds Ratio 1.030*** SE 0.000 Odds Ratio 1.030*** SE 0.000 Odds Ratio 1.031*** SE 0.000 Odds Ratio 1.031*** SE 0.000 Odds Ratio 1.031*** SE 0.000 Odds Ratio 1.033*** SE 0.000 Odds Ratio 1.033*** SE 0.000 Odds Ratio 1.033*** SE 0.000 SE 0.000 SE 0.000			

Table 3. As enrollment %black increases, the likelihood that a teacher is black increases

2

1

Similarly, for black or Hispanic teachers, a 1% difference in the percent of students who are black
or Hispanic is associated with a 3% difference (most recent two years) in the likelihood that the teacher is
black or Hispanic.

Table 4. As enrollment %black or Hispanic increases, the likelihood that a teacher is black or Hispanic
 increases

increases				
	School Enrollment Intercept			
		%Black or Hispanic	_	
2010	Odds Ratio	1.025***	0.085***	
	SE	0.001	0.006	
2011	Odds Ratio	1.031***	0.044***	
	SE	0.001	0.003	
2012	Odds Ratio	1.023***	0.085***	
	SE	0.001	0.006	
2013	Odds Ratio	1.008***	0.333***	
	SE	0.001	0.018	
2014	Odds Ratio	1.030***	0.043***	
	SE	0.001	0.003	
2015	Odds Ratio	1.031***	0.039***	
	SE	0.001	0.003	
note: *** p<0.01, ** p<0.05, * p<0.1				

8

1.2 Turnarounds are leading to a whitening of the teacher workforce in designated schools

9 10

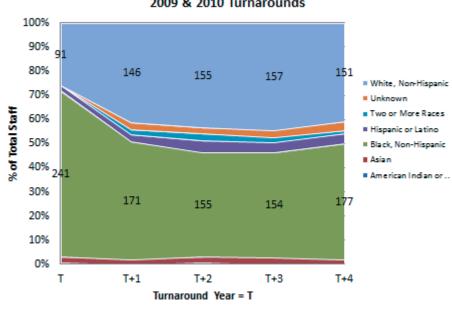

Here, I provide a summary of the changes in racial composition of the certified staff workforce in
schools identified for turnaround a) in 2009 & 2010 and b) separately in 2012. The following analyses
include the schools and related staff counts (by Turnaround Year) listed in Table 5.

	Table 5			
School Name	2009	2010	2012	Total
Bradwell Comm Arts	0	157	0	157
Casals Elem School	0	0	98	98
Chicago Vocational	0	0	249	249
Crane Technical Pre	0	0	57	57
Curtis Elem School	0	114	0	114
Deneen Elem School	0	112	0	112
Dulles Elem School	134	0	0	134
Dyett High School	0	0	43	43
Fenger Academy High	122	0	0	122
Fuller Elem School	0	0	66	66
Herzl Elem School	0	0	111	111
Johnson Elem School	97	0	0	97
Marquette Elem School	0	0	231	231
Marshall Metropolit	0	160	0	160
Phillips Academy Hi	0	176	0	176
Piccolo Elem Specia	0	0	109	109
Smith W Elem School	0	0	79	79
Stagg Elem School	0	0	111	111
Tilden Career Commu	0	0	113	113
Woodson South Elem	0	0	98	98
Total	353	719	1,365	2,437

1

Figure 1 summarizes the percent black, and percent black and Hispanic teachers in schools targeted for turnaround at time "T." Prior to "turnaround" the schools had average percent black teachers around 68%, and percent black and Hispanic teachers just over 70%. Immediately after turnaround, percent black and Hispanic teachers dropped by about 20%, to around 50%, and percent black as low as 40%. Those figures rebound to just over 50% black, or black and Hispanic teachers by 5 and 6 years after turnaround, still far from the minority composition prior to turnaround.

Figure 1³

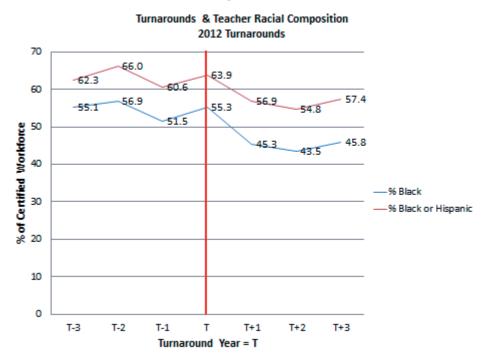


2 3 4 5 6

Figure 2 shows that for the most part, white teachers have filled that gap. Prior to turnaround, the schools included in this analysis had 241 black teachers and only 91 white teachers. By four years after turn around, black teacher counts were reduced to 177 and white teachers at 151.

³ Includes 2009 turnarounds:

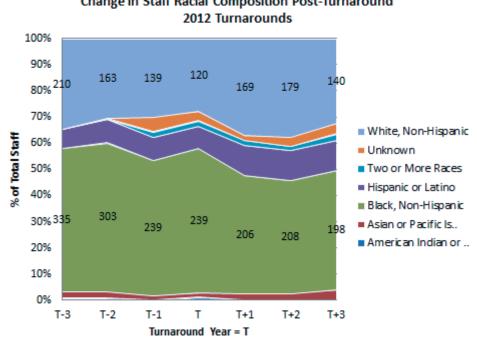
Figure 2



Change in Staff Racial Composition Post-Turnaround 2009 & 2010 Turnarounds

2 3 4

Figure 3 shows the reduction in black, and black and Hispanic teachers in Turnaround schools
from 2012. This reduction is more subtle than the 2009/2010 turnarounds, but still a noticeable shift. For
2012 turnarounds, % of teachers who were black was reduced 10% from 55% to 45% post-turnaround.
The reduction margin for black and Hispanic teachers is slightly less at 7% reduction, from 64% to 57%
post-turnaround.



1

3 Figure 4 shows that again, the post turnaround reduction in black teachers specifically was offset 4 by an increase in numbers of white teachers specifically. Total numbers of certified staff declined from 5 over 600 to under 450. While total numbers of Black teachers declined (by about 40), total numbers of 6 white teachers increase (by about 20 by year 3).

7

Change in Staff Racial Composition Post-Turnaround

Figure 4

2.0 CPS school accountability measures do not attempt to measure employee effectiveness

4 In the section of this report, I provide an overview of measures and indicators used in many state and local school rating systems. To some extent, these rating systems are designed for compliance with 5 6 federal statutes such as No Child Left Behind, reshaped by federal funding competitions such as Race to 7 the Top, and restructured under federal coercion such as the most recent wave of state waiver requests under No Child Left Behind (prior to ESSA adoption). While state and local systems for rating schools 8 9 tend to take common forms, similar to those either suggested under Federal regulations, adopted by 10 neighboring states or recommended by policy advocacy organizations, states and local districts have 11 substantial flexibility in the design of the systems, the indicators they choose and how they attach consequences to those indicators. That is, there is no Federal statute, nor was there during the time period 12 13 addressed herein, which specifically mandates that local districts must dismiss or displace all teachers in 14 schools with the lowest proportions of children meeting or exceeding specific math and reading test score 15 targets.

In section 2.1 of this report, specific attention is paid to whether and what extent various measures and indicators can or should be used for determining the effectiveness of schools or those who work in them. This is of particular interest because many of these measures and indicators, whether appropriate for determining effectiveness or not, are being used as the basis for making consequential employment decisions indirectly through the process of school closures, reconstitution or "turnaround."

In section 2.2, I address specifically which measures and indicators have been used by Chicago Public Schools for determining probationary status of schools, a preliminary step toward consequential interventions. I also address changes to the school rating program implemented in 2014 which acknowledge problems with prior rating components, but do substantially rectify them.

- 25
- 26 27

30

2.1 Types of measures & indicators in school accountability systems

I begin with a clarification of the distinction between "measures" and "indicators" in the contextof elementary and secondary education policy:

Measures: Measures are based on attributes of a system to which we apply some measurement 31 instrument at a given point in time. Measures aren't the attributes themselves, but the information 32 33 we gather from application of our measurement tool to the targeted attributes. For example, we construct pencil and paper, or computerized tests to "measure" achievement or aptitude in areas 34 35 such as mathematics or language arts, typically involving batches of 50 items/questions/problems 36 covering the intended content or skills. The measures we take can be referred to as "realizations" which are generated by underlying processes (all the stuff going on in school, as well as in the 37 daily lives of the children attending and teachers working in those schools, inclusive of weather 38 conditions, heating, cooling and lighting, home environments, etc.). Similarly, when we take a 39 child's temperature we are taking a measure on that child which may inform us whether the child 40 is suffering some illness. But that measure tells us nothing specific of the underlying process -41 42 that is, what is causing the child to have (or not have) a fever. If we wrongly assume the measure

> 3 4

5

6

7

8

9

is the underlying process, the remedy for a high temperature is simply to bathe the child in ice, an unlikely solution to whatever underlying process is actually causing the fever.

Indicators: Indicators are re-expressions of measures, often aggregating, simplifying or combining measures to make them understandable or more "useful" for interpreting, diagnosing or evaluating systems – that is, making inferences regarding what may be wrong (or right) regarding underlying system processes. Indicators are best used as "screening" tools, useful for informing how we might distribute follow-up diagnostic effort. That is, the indicators can't tell us what's wrong, or if anything really is wrong with underlying processes, but may provide us with direction as to which processes require additional observation.

10 11

Measures are only useful to the extent that they measure what we intend them to measure and that we use those measures appropriately based on their design and intent. Indicators are only useful to the extent that they appropriately re-express and or combine measures, and do not, for example, result in substantial information loss or distortion which may compromise their validity or reliability. One can too easily take an otherwise informative and useful measure, and make it meaningless through inappropriate simplification.

18 Expanding on the body temperature example, we might want to develop an indicator of the health 19 of a group of 100 schoolchildren. Following typical school indicator construction, we might simplify 20 temporal body temperature readings for a group of 100 children to a binary classification of over or under 21 98.6 degrees. Doing so, however, would convert otherwise potentially meaningful (continuously scaled) data into something significantly less meaningful (if not outright junk). First, applying this precise "cut-22 score" to the temperature ignores the margin of error in the measurement, establishing a seemingly 23 24 substantive difference between a temperature of 98.6 and 98.7, where such a small difference in reading 25 might result from imprecision of the measurement instrument itself, or our use of it. Second, applying this 26 cut-score ignores that a temperature of 103 is substantively different from a temperature of 98.7 (more so 27 than a difference between 98.6 & 98.7). Given the imprecision of measurement (where temperature 28 measurement is generally more precise than standardized testing), if large shares of the actual 29 temperatures lie between 98.6 and 98.7 degrees, then large numbers will likely be misclassified. The 30 over/under classification scheme has resulted in substantial information loss, limiting our ability to diagnose issues/problems with underlying processes. We've taken an otherwise useful indicator, and 31 32 converted it into meaningless junk.

33 34

35

Validity and Reliability

As noted above, for a measure to be useful it must measure what we intend it to measure, and we must be using/interpreting that measure based on what it actually measures. That is, the measure should be <u>valid</u>, which takes the forms of "face validity" and "predictive validity" (there are many additional distinctions, but I will limit the discussion herein to these two). A test of "algebraic reasoning" should measure a student's capacity to apply algebraic reasoning to test items which accurately represent the content of "algebraic reasoning." That is, content validity, which relates to face validity.

42 "Predictive validity" addresses whether the measure in question is "predictive" of a related, 43 important outcome. This is particularly important in K-12 education systems where it is understood that 44 successful test-taking is not the end-game for students. Rather, we hope these assessments will be 1 predictive of some later life outcome, starting, for example, with higher levels of education attainment

2 (high school graduation, college completion) and ultimately becoming a productive member of and/or3 contributor to society.

Measures commonly used for evaluating students, schools and education systems can actually have predictive validity without face validity. Typically, how well students perform on tests of language arts is a reasonable predictor (highly correlated with) of how well they also do on tests of mathematics. But that doesn't mean we can or should use tests of language arts as measures of mathematics achievement. The measures tend to be highly correlated because they each largely reflect cumulative differences in student backgrounds.

The measures should also be reliable. That is, they should consistently measure the same thing – though they might consistently measure the wrong thing (reliably invalid). If measures are neither reliable nor valid, indicators constructed from the measures are unlikely to be reliable or valid. But, it's also possible that measures are reliable and/or valid, but indicators constructed from those measures are neither.

Often, conversion of measures to indicators compromises either or both face or predictive validity. Sometimes it's as simple as choosing a measure that measures one thing (validly) and expressing it as an indicator to measure something else, like taking a test score which measures a students' algebraic reasoning ability at a point in time, and using it as an indicator of the quality of a school, or effectiveness of that child's teacher.

Other times, steps applied to convert measures to indicators, such as taking continuous scaled test scores and lumping them into categories, can convert a measure which had some predictive validity into an indicator which has little or none. For example, while high school mathematics test scores are somewhat predictive of success in college credit bearing math courses, simply being over or under a "passing" cut-score may have little relation to later success in college math, in part, because students on either side of that "passing" threshold do not have meaningfully different mathematics knowledge or skill.⁴

Aggregating a simplified metric (to proportions of a population over or under a given threshold) may compound the information loss. That is, by looking at the percent of children over or under and arbitrary and likely meaningless precise bright-line cut-score through an imprecise though potentially meaningful measure provides little useful information about either the individuals or the group of students (no less the institution they attend, or individuals employed by that institution).

- 32
- 33

Misattribution, Misapplication & Misinterpretation

34

Far too often, face validity is substantially compromised in indicator construction. The problem is that the policymakers interpreting the indicators often assume they mean something they simply don't and never could. A common form of this problem is misattribution – or asserting that measure or derived indicator provides insights into a specific underlying process – where in fact, the measures chosen, their re-expression and aggregation provide little or no insight into that process. I, along with colleagues Preston Green and Joseph Oluwole explain the misapplication of student growth measures in the context of teacher evaluation. Student growth indicators (Student Growth Percentiles) are rescaled estimates of

⁴ See for example, <u>http://usny.nysed.gov/scoring_changes/MemotoDavidSteinerJuly1.pdf</u> and/or Papay, J. P., Murnane, R. J., & Willett, J. B. (2010). The consequences of high school exit examinations for low-performing urban students: Evidence from Massachusetts. *Educational Evaluation and Policy Analysis*, *32*(1), 5-23.

1 the relative (to peers) change in student performance (in reading and math) from one point in time to 2 another. They do not, by their creators' admission, attempt to isolate the contribution of the teacher or school to that growth. That is, they are not designed to attribute growth to teacher or school effectiveness 3 and thus lack "face validity" for this purpose.⁵ But many state teacher evaluations wrongly use these 4 indicators for this purpose. In the same article, and second related article⁶, professors Green, Oluwole and 5 6 I explain how related approaches, like Value-added modeling at least attempt to isolate classroom or 7 school correlates of growth, partially addressing face validity concerns, but still failing to achieve 8 sufficient statistical validity or reliability.

9 Neither of our articles addresses the use of crude, school aggregate indictors, constructed with 10 inappropriately reduced versions of assessment measures, to infer institutional (school) or individual (teacher) influence (effectiveness), leading to employment consequence. That is because these indicators 11 clearly lack the most basic face validity for making such inferences or attribution, leading to employment 12 consequence. As such, we felt it unnecessary to bother critiquing these indicators for this purpose. As 13 noted above, proportions of children over/under arbitrary thresholds on assessments tell us little about the 14 achievement of those children. These indicators are aggregations of meaningless distinctions made 15 16 through otherwise potentially meaningful measures. These aggregations of meaningless distinctions 17 surely provide no useful information about the institutions (and by extension the employees of those institutions) attended by the students on which the measures were originally taken. 18

19 In the best case, the un-corrupted measure – the appropriately scaled test score itself – may be 20 an indicator reflecting ALL of the underlying processes that have brought the child to this point in time in their mathematics or language arts achievement, knowledge or skills. Those processes include all that 21 22 went on from maternal health through early childhood interactions, community and household conditions, general health and wellbeing along the way (& related environmental hazards), and even when entering 23 24 school, the greater share of hours per day spent outside of the schooling environment. Point in time 25 academic achievement measures pick up cumulative effects of all of these processes and conditions, 26 which are vastly disparate across children and their neighborhoods, which is precisely why these 27 measures continue to reveal vast disparities by race and income, and by extension, across schools and the often highly segregated neighborhoods they serve.⁷ 28

- 29
- 30 31

2.1.1 The usual indicators, what they mean & don't mean

Here, I provide an overview of the types of indicators often used in state school report cards and

32 large district school rating systems. Simply because they are often used does not make them valid or 33 reliable. Nor does it provide the excuse for using these indicators inappropriately – such as misattribution 34

⁵ Baker, B. D., Oluwole, J., & Green, P. C. (2013). The legal consequences of mandating high stakes decisions based on low quality information: Teacher evaluation in the race-to-the-top era. Education Evaluation and Policy Analysis Archives, 21, 1-71.

⁶ Green III, P. C., Baker, B. D., & Oluwole, J. (2012). Legal and Policy Implications of Value-Added Teacher Assessment Policies, The. BYU Educ. & LJ, 1.

⁷ Duncan, G. J., & Murnane, R. J. (Eds.). (2011). Whither opportunity?: Rising inequality, schools, and children's life chances. Russell Sage Foundation.

Coley, R. J., & Baker, B. (2013). Poverty and education: Finding the way forward. Educational Testing Service Center for Research on Human Capital and Education.

Reardon, S. F., & Robinson, J. P. (2008). Patterns and trends in racial/ethnic and socioeconomic academic achievement gaps. Handbook of research in education finance and policy, 497-516.

to underlying processes – when the inappropriateness of such application is well understood. Table 6 provides a summary of common indicators. The majority of indicators in Table 1 are constructed from measures derived from standardized achievement tests, usually in math and English language arts, but increasingly in science and other subject areas. State and local school rating systems also tend to include

5 indicators of graduation and attendance rates.

6 Of all of the indicators listed in Table 6, only one – Value-Added estimates – attempts attribution 7 of "effect" to schools and teachers, though, with questionable and varied success. Most are well 8 understood to reflect both socio-economic and racial bias, at the individual level and in group level 9 aggregation. More detailed discussion of these indicators follows Table 6.

Measure Type	Indicator Type	Facial	Notes	Attribution / Effect	Used by CPS?
Academic assessment (e.g. reading/ math standardized test)	Scale score or group mean scale score	Student or group status/ performance level	• All such measures norm referenced to an extent, even if attached to supposed criteria (content frameworks)	Makes NO attempt to isolate influence of schools or teachers [no manifest relationship]	No
	Percent "proficient" or higher (or above/below any status cut-point)	Status of a group of students relative to an arbitrary "cut-score" through distribution	 Ignores that those just above/below threshold not substantively different. Substantially reduces information (precision) 	Makes NO attempt to isolate influence of schools or teachers [no manifest relationship]	Yes
	Cohort Trend/ Change	Difference in status of groups sequentially passing through a system	 Typically measures whether subsequent group has higher share over/under threshold than previous. Influenced by differences in group makeup, and/or differences in test administration from one year to next. 	Makes NO attempt to isolate influence of schools or teachers [no manifest relationship]	Yes
	Growth Percentiles	Change in student test score from time=t to time=t+1	 Usually involves rescaling data based on student position in distribution of student scores. Does not account for differences in student background, school or home context (resources) 	Makes NO attempt to isolate influence of schools or teachers [no manifest relationship]	No
	Value-Added	Change in student	Uses regression	Attempts to	Yes

10 Table 6. Conceptual Overview of School Performance Indicators

Measure Type	Indicator Type	Facial	Notes	Attribution / Effect	Used by CPS?
		test score from time=t to time=t+1 conditioned on student and school characteristics	 models to attempt to compare growth of otherwise similar students in otherwise similar settings. Ability isolate classroom/school "effects" highly dependent on comprehensiveness, precision & accuracy of covariates. 	isolate relationship between influence gains and classroom factors (teachers) and schools. Suspect in terms of manifest relationship. ⁸	
Persistence & Completion	Graduation Rates / On-Time Progress / Dropout Rates	Student Status / Performance Level	• Tracks student pathways through grade levels, courses against expectations (on track)	Makes NO attempt to isolate influence of schools (resources, etc.) or teachers [no manifest relationship]	Yes
Attendance	Proportion of "enrolled" students "attending" per day, averaged over specified time period	Status of a group of students relative to an arbitrary "cut-score" through distribution	 Typically does not discriminate between types/causes of absences. Known to be disparate by race/SES, in relation to chronic health conditions.⁹ 	Makes NO attempt to isolate influence of schools (resources, etc.) or teachers [no manifest relationship]	Yes

Common indicators constructed with standardized assessment measures are summarized below:

7

8

• **"Proficiency" Shares:** Shares of children scoring above/below assigned cut-scores on standardized assessments. Few states or districts have conducted thorough (if any) statistical analysis of the predictive validity of the assigned cut-points or underlying assessments.¹⁰ Raw scores underlying these indicators capture primarily cumulative differences in the starting points and backgrounds of students, individually and collectively in schools and classrooms. Proportions of children over/under thresholds depend on where those arbitrary thresholds are set.

9 10 11

12

• Whether raw scores or proficiency shares, these indicators are well understood to substantially (if not primarily) reflect racial and socio-economic disparity across students and schools.

⁹ http://www.changelabsolutions.org/sites/default/files/School-Financing StatePolicymakers FINAL 09302014.pdf

⁸ Baker, B. D., Oluwole, J., & Green, P. C. (2013). The legal consequences of mandating high stakes decisions based on low quality information: Teacher evaluation in the race-to-the-top era. *Education Evaluation and Policy Analysis Archives*, 21, 1-71.

Green III, P. C., Baker, B. D., & Oluwole, J. (2012). Legal and Policy Implications of Value-Added Teacher Assessment Policies, The. *BYU Educ. & LJ*, 1.

¹⁰ Some concordance analyses relating ISAT scores to ACT "college ready" benchmarks have been produced. See: <u>http://www.k12accountability.org/resources/Early-Intervention/Early-intervention-targets.pdf</u> & <u>http://evanstonroundtable.com/ftp/P.Zavitkovsky.2010.ISAT.chart.pdf</u>

Change in "Proficiency" Shares (Cross-Cohort Percent Over/Under): For example, 1 comparing the proficiency rate of this year's 4th grade class to last year's 4th grade class in the 2 same school, perhaps calculating a trend over multiple cohorts/years. These indicators capture 3 4 primarily a) changes in the starting points and backgrounds of incoming cohorts of students 5 (demographic drift), and b) changes in the measures underlying the accountability system (test item familiarity, item difficulty, etc.), whether by design or not. In many cases, year over year 6 7 changes in shares over/under proficiency cut-scores are little more than noise (assuming no substantive changes to tests themselves, or cohort demography) created by students shifting 8 9 over/under arbitrary cut-scores with no substantive difference in their achievement level, 10 knowledge or skill.

11 12

13

• These indicators do not tend to reflect racial or socio-economic disparity (except for trends in those disparities) in large part because these indicators usually reflect nothing of substance or importance, and are often simply noise (junk).¹¹

Student Achievement Growth (Student Growth Percentiles): Constructed by comparing test 14 • score growth of each student, with respect to others starting at similar points in the distribution, 15 among their peers. These indicators include only prior scores and do not include other attributes 16 17 of students, their peers or schooling context. These indicators capture differences in student measures from one point in time to another, and are most often (read always, in practice) scaled 18 19 relative to other students, so as to indicate how a students' "growth" compares with an average 20 student's growth. These indicators may also capture primarily the conditions under which the 21 student is learning, both at home and in school.

22 23

24

• These indicators tend to be racially and socio-economically disparate because they control only for differences in students' initial scores, and not for students school and peer context, or students' own socio-economic attributes.¹²

Value-Added Model Estimates: Based on statistical modeling of student test scores, given their 25 26 prior scores, and various attributes of the students, their peers and schooling context (breadth of factors included varies widely, as does the precision with which these factors are measured). 27 These measures are the "best attempt" (as I often say "least bad" alternative) to isolate the school 28 and/or classroom related factors associated with differences in student measures from one point in 29 30 time to another, but cannot, for example differentiate between school resources including instructional materials, building heating, cooling and lighting and/or the "effectiveness" of 31 employees.¹³ 32

33 34 • These indicators may substantively reduce racial and economic disparity of the measures on which they are based, by using rich data to compare growth of similar students in similar contexts.

³⁵ 36

¹¹ See, for example: <u>http://www.shankerinstitute.org/blog/if-your-evidence-changes-proficiency-rates-you-probably-dont-have-much-evidence</u>

¹² See also: Ehlert, M., Koedel, C., Parsons, E., & Podgursky, M. (2014). Choosing the right growth measure. *Education Next*, 14(2) & <u>https://njedpolicy.wordpress.com/2014/06/02/research-note-on-teacher-effect-vs-other-stuff-in-new-jerseys-growthpercentiles/ & http://www.shankerinstitute.org/blog/does-it-matter-how-we-measure-schools-test-based-performance</u>

¹³ Baker, B. D., Oluwole, J., & Green, P. C. (2013). The legal consequences of mandating high stakes decisions based on low quality information: Teacher evaluation in the race-to-the-top era. *Education Evaluation and Policy Analysis Archives*, 21, 1-71.

Green III, P. C., Baker, B. D., & Oluwole, J. (2012). Legal and Policy Implications of Value-Added Teacher Assessment Policies, The. *BYU Educ. & LJ*, 1

1 School rating reports also often include indicators of student attendance and attainment and/or progress 2 toward goals including graduation. It must be understood that even these indicators are subject to a 3 variety of external influences, making "attribution" complicated. For example, one might wrongly assume 4 that attendance rates reflect the efforts of schools to get kids to attend. If schools do a good job, kids 5 attend and if they don't, kids skip. If this is the case, there should be little difference in attendance rates 6 between "rich schools" and "poor schools" unless there is actually different effort on the part of school 7 staff. This assertion ignores the well understood reality that children from lower income and minority 8 backgrounds are far more likely to suffer from chronic illness including asthma, obesity or both, which is a strong predictor of chronic absence (>10).¹⁴ Additionally, neighborhood safety affects daily 9 attendance.¹⁵ These forces combine to result in significant racial and economic disparities in school 10 attendance rates which are beyond the control of local school personnel. 11

- 12
- 13
- 14

15

2.2 Measures used by Chicago Public Schools for determining school and employee consequences

In this section, I provide a brief overview of the measures used in the Chicago Public Schools rating system, but prior to and after 2014. This report focuses on factors determining school classification, including assignment to probationary status in 2012 and years prior. I address subsequent changes to the rating system because those changes indicate that district officials are aware of the shortcomings of prior measures, even though changes to the rating system fail to fully rectify the problems.

- 21
- 22 23

24

2.2.1 Measures included in point calculation are facially invalid for determining school quality and employee effectiveness

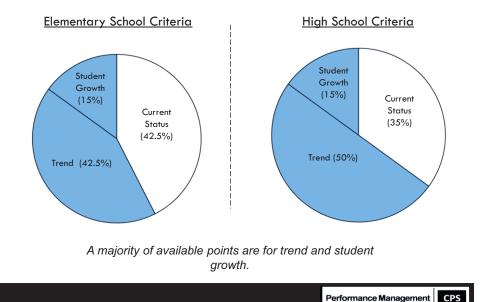
Table 7 summarizes the indicators and their relative weight in overall school rating, used for elementary schools (top) and secondary schools (bottom) in Chicago based on the 2010 rating scheme. For both elementary and secondary schools, the bulk of the weighting is placed on measures of proportions of children over/under cut scores on reading, math and science assessments. Only one measure, and only for elementary schools, attempts attribution to school effectiveness (value-added measure).

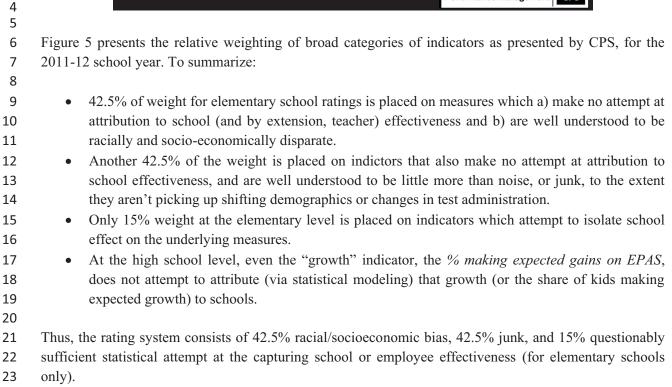
EPAS "Growth" measures in high school ratings are based on student year-over-year gains on a series of tests without controlling for outside influences on that growth. Further, gains are arbitrarily cut into an over/under expectations classification scheme without consideration for the imprecision of the underlying measures.

¹⁴ http://www.changelabsolutions.org/sites/default/files/School-Financing_StatePolicymakers_FINAL_09302014.pdf

¹⁵ Sharkey, P., Schwartz, A. E., Ellen, I. G., & Lacoe, J. (2014). High stakes in the classroom, high stakes on the street: The effects of community violence on students' standardized test performance. Sociological Science, 1, 199-220.

1 Table 7. Component of the 2010 School Ratings


Points Points I. ISAT Math 6 Current status 1. ISAT Math 6 Current status 2. ISAT Reading 6 Current status 3. ISAT Science 6 Current status 4. ISAT Composite (All Grades) 6 Current status 5. ISAT Composite (Highest Grade) 6 Current status 6. Attendance 6 Current status 7. Value Added ISAT Reading 3 1 8. Value Added ISAT Reading 3 1 90%) 7. Value Added ISAT Reading 3 8. Value Added ISAT Reading 3 1 9. Orear Status Trend (with ceiling at 90%) 1 7. Value Added ISAT Reading 3 1 8. Value Added ISAT Reading 3 1 9. Orear Drop Out Rate 6 Current status 1. One Year Drop Out Rate 6 Current status 7. Value Added ISAT Reading 2 1 9. Orear Drop Out Rate 6 Current status 7. Trend (with ceiling at 90%) 1 2. Freshman On-Track 6 <t< th=""><th>Measure</th><th>#</th><th>Components</th><th>Notes</th></t<>	Measure	#	Components	Notes
1. ISAT Math 6 Current status 7. ISAT Reading 6 Current status 2. ISAT Reading 6 Current status 90%) 7rend (with ceiling at 90%) 3. ISAT Science 6 Current status 7rend (with ceiling at 90%) 4. ISAT Composite (All Grades) 6 Current status 6 Current status 7rend 7rend (with ceiling at 90%) 7rend 6. Attendance 6 Current status 7. Value Added ISAT Reading 3 7rend 8. Value Added ISAT Reading 3 7rend 90%) 7. Value Added ISAT Reading 3 7rend 7. Value Added ISAT Reading 3 7rend 8. Value Added ISAT Math 3 7rend 9. Ow() 6 Current status 7rend 9. Value Added ISAT Math 3 7rend 7rend 9. Ow() 6 Current status 7rend 7rend 9. Ow() 6 Current status 7rend 7rend 7rend 9. State Added ISAT Reading		Points		
Z. ISAT Reading 6 Current status 3. ISAT Science 6 Current status 6 Current status 7rend 7 Yean 6 7 Current status 7rend 7 Yean 6 Current status 7 Trend (with ceiling at 90%) 4. ISAT Composite (All Grades) 6 Current status 7 Trend (with ceiling at 90%) 5. ISAT Composite (Highest Grade) 6 Current status 6 Current status 7rend (with ceiling at 90%) 90%) 90%) 6. Attendance 6 Current status 7 Value Added ISAT Reading 3 8. Value Added ISAT Math 3 111111111111111111111111111111111111		(Comment status	
2. ISAT Reading 6 Current status 3. ISAT Science 6 Current status 4. ISAT Composite (All Grades) 6 Current status 5. ISAT Composite (Highest Grade) 6 Current status 6 Current status 7 7. Nature Added ISAT Reading 3 7 8. Value Added ISAT Reading 3 90%) 7. Value Added ISAT Reading 3 7 8. Value Added ISAT Reading 3 7 9. Trend (with ceiling at 90%) 7 7 9. Value Added ISAT Reading 3 7 9. Freshman On-Track 6 7	1. ISAI Math	0		
2. ISAT Reading 6 Current status 3. ISAT Science 6 Current status 4. ISAT Composite (All Grades) 6 Current status 5. ISAT Composite (Highest Grade) 6 Current status 6. Attendance 6 Current status 7. Value Added ISAT Reading 3 8. Value Added ISAT Reading 3 9. One Year Drop Out Rate 6 6 Current status 7. rend (with ceiling at 90%) 7. Value Added ISAT Reading 3 8. Value Added ISAT Reading 3 9. One Year Drop Out Rate 6 6 Current status 7. Freshman On-Track 6 6 Current status 7. Freshman On-Track 6 7. PSAE Reading 2 9. PSAE Reading 2 9. PSAE Science 2 9. PSAE Science 6 9. Students Earolled in AP or 1B 3 9. Students Scoring 3+ on AP or 4+ on 1B Exams 3 9. Students Scoring 3+ on AP or 4+ on 1B Exams 3				
2. ISAT Reading 6 Current status 7 Trend (with ceiling at 90%) 3. ISAT Science 6 Current status 8. ISAT Composite (All Grades) 6 Current status 90%) 7. Frend (with ceiling at 90%) 4. ISAT Composite (All Grades) 6 Current status 7. Value Composite (Highest Grade) 6 Current status 8. Value Added ISAT Reading 3 7. Value Added ISAT Reading 90%) 7. Value Added ISAT Reading 3 8. Value Added ISAT Math 11. One Year Drop Out Rate 6 Current status 17. Trend 12. Freshman On-Track 6 Current status 17. Trend 13. ACT Score 6 Current status 17. Trend 14. PSAE Reading 2 17. Attendance 17. Attendance 15. PSAE Math 2 17. Attendance 10. Crease in % 16. Students Enrolled in AP or IB 3 3 Trend 17. Attendance 6 10. Crease in % 10. Crease in % Scori				
Trend (with ceiling at 90%) Trend (with ceiling at 90%) 3. ISAT Science 6 LISAT Composite (All Grades) 6 Current status Trend (with ceiling at 90%) 4. ISAT Composite (Highest Grade) 6 Current status Trend (with ceiling at 90%) 5. ISAT Composite (Highest Grade) 6 Current status Trend (with ceiling at 90%) 6. Attendance 6 7. Value Added ISAT Reading 3 8. Value Added ISAT Math 3 High School Indicators Trend (with ceiling at .5%) 2. Freshman On-Track 6 Current status Trend (with ceiling at .5%) 2. Freshman On-Track 6 Current status Trend (with ceiling at .5%) 3. ACT Score 6 Current status Trend (with ceiling at .23) 4. PSAE Reading 2 5. PSAE Math 2 6 Current status 7. Attendance 6 6 Current status 7. Attendance Increase in % 8. Students Enrolled in AP or IB 3 9. Students Scoring 3+ o	2. ISAT Reading	6	, ,	
3. ISAT Science 6 Current status 3. ISAT Composite (All Grades) 6 Current status 4. ISAT Composite (All Grades) 6 Current status 5. ISAT Composite (Highest Grade) 6 Current status 6 Current status 7 7. Value Added ISAT Reading 3 7 8. Value Added ISAT Reading 3 7 90%) 7. Value Added ISAT Reading 3 7 1. One Year Drop Out Rate 6 Current status 7 1. One Year Drop Out Rate 6 Current status 7 7. Value Added ISAT Math 3 7 7 1. One Year Drop Out Rate 6 Current status 7 1. One Year Drop Out Rate 6 Current status 7 2. Freshman On-Track 6 Current status 7 3. ACT Score 6 Current status 7 7. Attendance 7 7 7 7 6. PSAE Reading 2 2 2 7 7 7 7 7 7 7 <				
3. ISAT Science 6 Current status 3. ISAT Science 6 Current status 7rend (with ceiling at 90%) 4. ISAT Composite (All Grades) 6 Current status 7rend (with ceiling at 90%) 5. ISAT Composite (Highest Grade) 6 Current status 7rend (with ceiling at 90%) 6. Attendance 6 Current status 7 Value Added ISAT Reading 3 8. Value Added ISAT Math 3 1 High School Indicators 1 7rend 1. One Year Drop Out Rate 6 Current status 7 Yalue Added ISAT Math 3 High School Indicators 1 7rend 1. One Year Drop Out Rate 6 Current status 7 Yalue Added ISAT Math 3 Jich School Indicators 1 7rend 1. One Year Drop Out Rate 6 Current status 7 Trend (with ceiling at 90%) 3. ACT Score 6 Current status 7 Trend (with ceiling at 23) 4. PSAE Reading				
4. ISAT Composite (All Grades) 6 Current status 7. Value Added ISAT Reading 3 6 8. Value Added ISAT Math 3 1 11. One Year Drop Out Rate 6 Current status 7. Freshman On-Track 6 Current status 7. Freshman On-Track 6 Current status 7. State Reading 3 1 8. Value Added ISAT Reading 3 1 9. One Year Drop Out Rate 6 Current status 7. Value Added ISAT Math 3 1 9. State Science 6 Current status 1. One Year Drop Out Rate 6 Current status 7. Freshman On-Track 6 Current status 9. Students Enrolled in AP or 1B 3 1 9. Students Scoring 3+ on AP or 4+ on 1B Exams 3 1 9. Students Scoring 3+ on AP or 4+ on 1B Exams 3 1				
4. ISAT Composite (All Grades) 6 Current status 7 Trend (with ceiling at 90%) 5. ISAT Composite (Highest Grade) 6 Current status 7 Trend (with ceiling at 90%) 6. Attendance 6 Current status 7 Yalue Added ISAT Reading 3 8. Value Added ISAT Math 3 1 90 7. Value Added ISAT Math 3 1. One Year Drop Out Rate 6 Current status 1. One Year Drop Out Rate 6 Current status 7. Freshman On-Track 6 Current status 7. Freshman On-Track 6 Current status 7. PSAE Reading 2 1 9 1 1 1 9 1 1 1 9 1 1 1 9 1 1 1 9 1 1 1 9 1 1 1 9 1 1 1 9 1 1 1 10 1 1 1 <th>3. ISAT Science</th> <th>6</th> <th>Current status</th> <th></th>	3. ISAT Science	6	Current status	
4. ISAT Composite (All Grades) 6 Current status Trend Trend (with ceiling at 90%) 5. ISAT Composite (Highest Grade) 6 Current status Trend (with ceiling at 90%) 90%) 6. Attendance 6 Current status 7. Value Added ISAT Reading 3 Trend 8. Value Added ISAT Reading 3			Trend	
Trend (with ceiling at 90%) 5. ISAT Composite (Highest Grade) 6 Current status 7. Value Added ISAT Reading 8. Value Added ISAT Reading 3 8. Value Added ISAT Reading 3 1. One Year Drop Out Rate 6 7. Value Added ISAT Reading 3 1. One Year Drop Out Rate 6 7. Value Added ISAT Reading 3 1. One Year Drop Out Rate 6 7. Value Added ISAT Meth 3 1. One Year Drop Out Rate 6 Current status Trend (with ceiling at .5%) 2. Freshman On-Track 6 6 Current status 7. Trend (with ceiling at 90%) 3. ACT Score 6 6 Current status 7 Trend (with ceiling at 23) 4. PSAE Reading 2 6. PSAE Science 2 7. Attendance 6 8. Students Enrolled in AP or IB 3 7. Attendance 6 8. Students Scoring 3+ on AP or 4+			(with ceiling at 90%)	
S. ISAT Composite (Highest Grade)(with ceiling at 90%)5. ISAT Composite (Highest Grade)6Current statusTrend (with ceiling at 90%)7. Value Added ISAT Reading36. Attendance6Current status7. Value Added ISAT Reading318. Value Added ISAT Math3119 School Indicators11. One Year Drop Out Rate6Current status7. Freshman On-Track6Current status7. Freshman On-Track6Current status7. ACT Score6Current status3. ACT Score6Current status5. PSAE Reading216. PSAE Science217. Attendance617. Attendance618. Students Enrolled in AP or IB3Trend (with ceiling at 35%)9. Students Scoring 3+ on AP or 4+ on IB Exams3Trend (meta status	4. ISAT Composite (All Grades)	6	Current status	
5. ISAT Composite (Highest Grade) 6 Current status 7. Value Added ISAT Reading 3 8. Value Added ISAT Reading 3 9. Value Added ISAT Reading 3 9. Value Added ISAT Math 3 1. One Year Drop Out Rate 6 0. Prescuence 6 Current status 7 1. One Year Drop Out Rate 6 0. Prescuence 6 Current status 7 7. Value Added ISAT Math 3 1. One Year Drop Out Rate 6 0. Current status 7 Trend (with ceiling at .5%) 2. Freshman On-Track 6 Current status 7 Trend (with ceiling at 90%) 3. ACT Score 6 Current status 7 Trend (with ceiling at 23) 4. PSAE Reading 2 5. PSAE Math 2 6 7 7. Attendance 6 7. Attendance 6 8. Students Enrolled in AP or IB 3 9. Students Scoring 3+ on AP or 4+ on IB Exams				
Trend (with ceiling at 90%) Trend (with ceiling at 90%) 6. Attendance 6 7. Value Added ISAT Reading 3 8. Value Added ISAT Math 3 1. One Year Drop Out Rate 6 6. Current status Trend (with ceiling at 90%) 7. Value Added ISAT Reading 3 8. Value Added ISAT Math 3 1. One Year Drop Out Rate 6 7. Freshman On-Track 6 8. Value Corrent status Trend (with ceiling at .5%) 2. Freshman On-Track 6 6 Current status 7. Trend (with ceiling at 23) 4. PSAE Reading 2 5. PSAE Math 2 6. PSAE Science 2 7. Attendance 6 8. Students Enrolled in AP or IB 3 3. Trend Increase in % Enrolled 9. Students Scoring 3+ on AP or 4+ on IB Exams 3				
(with ceiling at 90%)6. Attendance67. Value Added ISAT Reading38. Value Added ISAT Math39. Value Added ISAT Math49. Value Added ISAT Math69. Current status71. One Year Drop Out Rate60. Current status77. Act Score61. PSAE Reading29. PSAE Math29. PSAE Science21. Attendance61. Attendance61. Attendance61. Attendance61. Attendance61. Attendance71. Attendance71. Attendance71. Attendance61. Crease in % Enrolled1. Crease in % Scoring 3+ on AP or 4+ on IB Exams33TrendIncrease in % Scoring 3+ on AP or 4+ on IB Exams	5. ISAT Composite (Highest Grade)	6		
6. Attendance90%)6. Attendance6Current statusTrend (with ceiling at 90%)7. Value Added ISAT Reading38. Value Added ISAT Math390%)1. One Year Drop Out Rate6Current status1. One Year Drop Out Rate6Current status2. Freshman On-Track6Current status3. ACT Score6Current status3. ACT Score6Current status4. PSAE Reading215. PSAE Math216. Students Enrolled in AP or IB3Trend (with ceiling at 35%)9. Students Scoring 3+ on AP or 4+ on IB Exams3Trend1. One Vear Status Scoring 3+ on AP or 4+ on IB Exams3Trend1. One Vear Status Scoring 3+ on AP or 4+ on IB Exams3Trend1. One Vear Status Scoring 3+ on AP or 4+ on IB Exams3Trend3. Attendance3TrendIncrease in % Scoring 3+ on AP or 4+ on IB Exams				
6. Attendance 6 Current status 7. Value Added ISAT Reading 3 8. Value Added ISAT Math 3 1. One Year Drop Out Rate 6 2. Freshman On-Track 6 3. ACT Score 6 6. PSAE Reading 2 7. Value Added ISAT Math 7 3. High School Indicators 7 1. One Year Drop Out Rate 6 6 Current status Trend 7 (with ceiling at .5%) 2 2. Freshman On-Track 6 6 Current status 7 Trend (with ceiling at 90%) 3 3. ACT Score 6 6 Current status 7 Trend (with ceiling at 23) 4 9 PSAE Reading 2 2 3 7 6 9 7 Attendance 6 7 8. Students Enrolled in AP or IB 3 7 Trend (with ceiling at 35%) 10 <th></th> <th></th> <th></th> <th></th>				
7. Value Added ISAT Reading 3 8. Value Added ISAT Math 3 9. Value Added ISAT Math 3 1. One Year Drop Out Rate 6 Current status Trend (with ceiling at .5%) 2. Freshman On-Track 6 Current status Trend (with ceiling at 90%) 3. ACT Score 6 6 Current status 7. Trend (with ceiling at 90%) 3. ACT Score 6 6 Current status 7. Trend (with ceiling at 23) 4. PSAE Reading 2 5. PSAE Math 2 6 PSAE Science 7. Attendance 6 8. Students Enrolled in AP or IB 3 3 Trend (with ceiling at 35%) 9. Students Scoring 3+ on AP or 4+ on IB Exams 3		-	,	
(with ceiling at 90%)7. Value Added ISAT Reading38. Value Added ISAT Math31. One Year Drop Out Rate66Current status7. rend (with ceiling at .5%)2. Freshman On-Track66Current status7. rend (with ceiling at .5%)3. ACT Score66Current status7. ACT Score66Current status7. PSAE Reading29195. PSAE Math211. Attendance695. Students Enrolled in AP or IB37 rend (with ceiling at 35%)9. Students Scoring 3+ on AP or 4+ on IB Exams337 rend (with ceiling at 35%)	6. Attendance	6		
7. Value Added ISAT Reading 3 3 8. Value Added ISAT Math 3 High School Indicators 1. One Year Drop Out Rate 6 Current status Trend (with ceiling at .5%) 2. Freshman On-Track 6 2. Freshman On-Track 6 3. ACT Score 6 4. PSAE Reading 2 5. PSAE Math 2 6. PSAE Science 2 7. Attendance 6 8. Students Enrolled in AP or IB 3 3. Trend (with ceiling at 35%) Increase in % Enrolled				
8. Value Added ISAT Math 3 High School Indicators 3 1. One Year Drop Out Rate 6 2. Freshman On-Track 6 6 Current status Trend (with ceiling at .5%) 2. Freshman On-Track 6 6 Current status Trend (with ceiling at 90%) 3. ACT Score 6 6 Current status Trend (with ceiling at 20%) 3. ACT Score 6 6 Current status Trend (with ceiling at 23) 4. PSAE Reading 2 5. PSAE Math 2 6 FSAE Science 7. Attendance 6 8. Students Enrolled in AP or IB 3 3 Trend (with ceiling at 35%) Enrolled 9. Students Scoring 3+ on AP or 4+ on IB Exams 3		2	(with ceiling at 90%)	
High School Indicators 6 Current status 1. One Year Drop Out Rate 6 Current status 2. Freshman On-Track 6 Current status 3. ACT Score 6 Current status 4. PSAE Reading 2 7rend (with ceiling at 23) 5. PSAE Math 2 7 6. PSAE Science 2 7 7. Attendance 6 1ncrease in % (with ceiling at 35%) 8. Students Enrolled in AP or IB 3 Trend (with ceiling at 35%) 9. Students Scoring 3+ on AP or 4+ on IB Exams 3 Trend	8			
1. One Year Drop Out Rate 6 Current status Image: Constraint of the state of th		3		
Image: constraint of the constraint		6	Current status	
2. Freshman On-Track6Current status2. Freshman On-Track6Current status3. ACT Score6Current status3. ACT Score6Current status4. PSAE Reading2Image: Constraint of the status5. PSAE Math2Image: Constraint of the status6. PSAE Science2Image: Constraint of the status7. Attendance6Image: Constraint of the status8. Students Enrolled in AP or IB3Trend (with ceiling at 35%)9. Students Scoring 3+ on AP or 4+ on IB Exams3Trend3TrendIncrease in % Scoring	1. One real Drop Out Kate	0		
2. Freshman On-Track 6 Current status Image: Students Enrolled in AP or IB 3 Trend (with ceiling at 35%) 9. Students Scoring 3+ on AP or 4+ on IB Exams 3 Trend (with ceiling at 35%)				
Trend (with ceiling at 90%)3. ACT Score66Current statusTrend (with ceiling at 23)4. PSAE Reading22	2. Freshman On-Track	6		
3. ACT Score 6 Current status 7. Attendance 6 Increase in % 8. Students Enrolled in AP or IB 3 Trend (with ceiling at 35%) 9. Students Scoring 3+ on AP or 4+ on IB Exams 3 Trend (with ceiling at 35%)		0		
3. ACT Score 6 Current status Trend Trend (with ceiling at 23) 4. 4. PSAE Reading 2 5. PSAE Math 2 6. PSAE Science 2 7. Attendance 6 8. Students Enrolled in AP or IB 3 9. Students Scoring 3+ on AP or 4+ on IB Exams 3 Trend Increase in % Scoring				
4. PSAE Reading 2 4. PSAE Reading 2 5. PSAE Math 2 6. PSAE Science 2 7. Attendance 6 8. Students Enrolled in AP or IB 3 Trend (with ceiling at 35%) 9. Students Scoring 3+ on AP or 4+ on IB Exams 3 Trend	3. ACT Score	6		
4. PSAE Reading 2 5. PSAE Math 2 6. PSAE Science 2 7. Attendance 6 8. Students Enrolled in AP or IB 3 Trend (with ceiling at 35%) 9. Students Scoring 3+ on AP or 4+ on IB Exams 3 Trend				
5. PSAE Math 2 6. PSAE Science 2 7. Attendance 6 8. Students Enrolled in AP or IB 3 7. Attendance 6 9. Students Scoring 3+ on AP or 4+ on IB Exams 3 7. Trend Increase in % Enrolled Increase in % Scoring			(with ceiling at 23)	
6. PSAE Science 2 7. Attendance 6 8. Students Enrolled in AP or IB 3 9. Students Scoring 3+ on AP or 4+ on IB Exams 3	4. PSAE Reading	2		
6. PSAE Science 2 7. Attendance 6 8. Students Enrolled in AP or IB 3 9. Students Scoring 3+ on AP or 4+ on IB Exams 3				
7. Attendance 6 Increase in % 8. Students Enrolled in AP or IB 3 Trend (with ceiling at 35%) Increase in % 9. Students Scoring 3+ on AP or 4+ on IB Exams 3 Trend Increase in % Scoring	5. PSAE Math	2		
7. Attendance 6 Increase in % 8. Students Enrolled in AP or IB 3 Trend (with ceiling at 35%) Increase in % 9. Students Scoring 3+ on AP or 4+ on IB Exams 3 Trend Increase in % Scoring	<u> </u>			
8. Students Enrolled in AP or IB 3 Trend (with ceiling at 35%) Increase in % Enrolled 9. Students Scoring 3+ on AP or 4+ on IB Exams 3 Trend Increase in % Scoring	6. PSAE Science	2		
8. Students Enrolled in AP or IB 3 Trend (with ceiling at 35%) Increase in % Enrolled 9. Students Scoring 3+ on AP or 4+ on IB Exams 3 Trend Increase in % Scoring				
(with ceiling at 35%)Enrolled9. Students Scoring 3+ on AP or 4+ on IB Exams3TrendIncrease in % Scoring	7. Attendance	6		
(with ceiling at 35%)Enrolled9. Students Scoring 3+ on AP or 4+ on IB Exams3TrendIncrease in % Scoring				
9. Students Scoring 3+ on AP or 4+ on IB Exams 3 Trend Increase in % Scori	8. Students Enrolled in AP or IB	3		
(with ceiling at 90%)	9. Students Scoring 3+ on AP or 4+ on IB Exams	3		Increase in % Scoring
	10 Students Molting Engented EDAC Dealler	2		
10. Students Making Expected EPAS Reading 3 Status		5	Status	
Gains Image: Constraint of the second seco		2	Status	
11. Students Making Expected EPAS Math Gains 3 Status Source: https://www.cpsboe.org/content/actions/2010 07/10-0728-PO4.pdf				


²

3

Figure 5. School Rating Component Weighting¹⁶

Weighting of Metrics

¹⁶ http://cps.edu/SiteCollectionDocuments/PerformancePolicy_Tutorial.ppt

2.2.2 Recent changes to the performance rating system acknowledge the inappropriateness of measures which dominated prior ratings which determined probationary status

3 4

1

2

5 Table 8 reflects changes made to components of the school rating system for elementary schools 6 for 2014¹⁷ and Table 9 reflects changes made to the components of the school rating system for high 7 schools. The changes reflect some positive developments while remaining insufficient for valid 8 attribution to school effectiveness. For example, far greater emphasis has been placed on achievement 9 growth, but the growth measure now appears to be merely a school relative "growth percentile" measure 10 as described here:

Average spring-to-spring scale score growth of students on the NWEA MAP assessment, compared to average national growth for schools with the same average pretest score. The school is assigned a percentile representing where it would fall on the national distribution.(p. 26)¹⁸

As explained previously herein, growth percentile measures make no attempt to attributed growth to the 15 effectiveness of the school or those employed within. As such, while shifting some emphasis to growth 16 17 rather than status, the new rating system includes no measure which even on its face attempts to isolate 18 school or teacher effectiveness. The new system places substantial weight on the known-to-be racially 19 and economically disparate measure of average daily attendance, but with some adjustment for "students 20 with qualifying medically fragile conditions."(p. 22) This exemption excludes prevalent chronic health 21 conditions (asthma, obesity) associated with race and poverty which are strongly predictive of chronic 22 absence.

23 The high school "growth" measure also fails to (even try to) isolate school effect on student outcomes. The high school growth measure uses 8th grade ISAT scores to predict the likely ACT score 24 (grade 11) for students with similar 8th grade ISAT scores (similar to a typical "growth percentile" 25 calculation, but using two different tests, 3 years apart, rather than a simple year over year comparison 26 27 using a supposedly similar test). School average predicted ACT scores are compared with school average actual ACT scores (for the same students) to determine relative growth (where actual ACT is greater than 28 predicted, positive growth is assumed) (p. 31). To the extent that usual growth percentile measures reveal 29 racial and economic disparity (because they fail to control for other background factors), one can certainly 30 31 expect these measures to be racially and socio-economically disparate (perhaps compounded by the 3 year gap). This factor alone accounts for 20% of high school rating. 32

¹⁷ See <u>http://www.cpsboe.org/content/documents/sy14-15 school quality rating policy.pdf & http://cps.edu/Performance/Documents/OverviewAccountabilityMetrics_June2014.ppt & http://cps.edu/Performance/Documents/SQRPHandbook.pdf</u>

¹⁸ http://cps.edu/Performance/Documents/SQRPHandbook.pdf

1 Table 8. Updated Components of Evaluation System (Elementary)¹⁹

Standard Elementary School Model

Elementary School Indicator	Weight
National School Growth Percentile on the NWEA Reading Assessment	12.5%
National School Growth Percentile on the NWEA Math Assessment	12.5%
Priority Group National Growth Percentile on the NWEA Reading Assessment	Up to 5%^
Priority Group National Growth Percentile on the NWEA Math Assessment	Up to 5%^
Percentage of Students Meeting or Exceeding National Average Growth Norms	10%
National School Attainment Percentile on the NWEA Reading Assessment for Grade 2	2.5%
National School Attainment Percentile on the NWEA Math Assessment for Grades 2	2.5%
National School Attainment Percentile on the NWEA Reading Assessment for Grades 3-8	5%
National School Attainment Percentile on the NWEA Math Assessment for Grades 3-8	5%
Percentage of Students Making Sufficient Annual Progress on the ACCESS Assessment	5%
Average Daily Attendance Rate	20%
My Voice, My School 5 Essentials Survey	10%
Data Quality Index Score	5%

[^]The priority group percentile is measured separately for African-American students, Hispanic students, EL and Diverse Learners. Each priority group calculation is worth 1.25% in reading and 1.25% in math. If there are fewer than 30 students in the priority group, the indicator is not used and the weight is reallocated to whole-school NWEA growth indicators.

2

3 Table 9. Updated Components of Evaluation System (High School)²⁰

Standard High School Model

High School Indicator	Weight (2014-2015)	Weight (2015-2016 and 2016-2017)
ACT Growth Differential*	20%	10%
Priority Group ACT Growth Differential*	Up to 10%^	Up to 5%^
National School Attainment Percentile on the ACT Assessment**	10%	10%
Average Daily Attendance Rate	10%	12.5%
Freshman On-Track Rate	10%	12.5%
1-Year Dropout Rate	5%	6.25%
4-Year Cohort Graduation Rate	10%	12.5%
Percent of Graduates Earning a 3+ on an AP Exam, a 4+ on an IB Exam, an Approved Early College Credit and/or an Approved Career Credential	5%	6.25%
College Enrollment Rate	5%	6.25%
College Persistence Rate	5%	6.25%
My Voice, My School 5 Essentials Survey	5%	6.25%
Data Quality Index Score	5%	6.25%

* Previously the National School Growth Percentile based on the EXPLORE, PLAN, and ACT Assessments.

** Previously the National School Attainment Percentile based on the EXPLORE, PLAN, and ACT Assessments.

[^] This is measured separately for African-American students, Hispanic students, EL and Diverse Learners. Each priority group calculation is worth 1.25%. If there are fewer than 30 students in the priority group, the indicator is not used and the weight is reallocated to whole school growth indicator.

⁴

¹⁹ <u>http://cps.edu/Performance/Documents/SQRPHandbook.pdf</u>

²⁰ http://cps.edu/Performance/Documents/SQRPHandbook.pdf

3

2.2.3 The design of CPS own value-added model acknowledges the inappropriateness of measures which dominate current and prior ratings

Finally, Chicago Public Schools has but no longer uses in its current ratings, school and teacher value-added model estimates. These estimates were included in the previous ratings but with relatively low weighting. At face value, because they attempt to isolate school or teacher (classroom) influence on student outcomes, VAM based estimates are superior to a) all elements of the current system and b) all other non-VAM elements of the previous system. That said, they are not without their flaws, especially when used for the rating and ranking of individual teachers for the purpose of imposing employment consequences.²¹

The elements of the CPS VAM convey a cognizance among district officials regarding factors which must be included in a model intended to isolate school or classroom influences on student outcomes. One cannot logically, simultaneously assert that the factors in this model are important for isolating school and teacher effects on student outcomes, while supporting a school quality rating system where the majority of weight is placed on indicators which account for NONE of these factors.

16 Those elements are summarized in Table 10, as drawn from the district's own 2013 overview of 17 the technical specifications of their VAM. Like the growth measures used in the present system, the 18 VAMs include prior performance. But the VAM models include a variety of other student characteristics 19 including gender, race, language proficiency (scaled by varied degrees of English language proficiency), 20 income status, homelessness and mobility. Some of these measures are likely insufficiently precise to 21 differentiate among CPS students, most notably, the free lunch indicator as a measure of income status. 22 Very large shares of CPS students would be assigned a value of "1" for this measure (qualifying for free 23 lunch), with no further differentiation among those living in deep, intergenerational poverty versus those 24 just at the threshold for qualifying for free lunch. This may leave behind some socio-economic bias in the 25 model estimates, which may also be racially correlated (even though race indicators are included in the model). 26

While still not entirely sufficient, the value-added model goes several steps beyond all other measures employed by CPS for characterizing school performance, and serves as acknowledgment by CPS leadership that they know full well that more complicated modeling is required for measuring effectiveness. A value-added model of this type might at least be used as a noisy, preliminary screening tool to identify schools for further observation. As Preston Green, Joseph Oluwole and I explain:

Arguably, a more reasonable and efficient use of these quantifiable metrics in human resource
management might be to use them as a knowingly noisy pre-screening tool to identify where
problems might exist across hundreds of classrooms in a large district. Value-added estimates
might serve as a first step toward planning which classrooms to observe more frequently. Under
such a model, when observations are completed, one might decide that the initial signal provided
by the value-added estimate was simply wrong. One might also find that it produced useful

²¹ Green III, P. C., Baker, B. D., & Oluwole, J. (2012). Legal and Policy Implications of Value-Added Teacher Assessment Policies, The. *BYUEduc. & LJ*, 1.

Baker, B. D., Oluwole, J., & Green, P. C. (2013). The legal consequences of mandating high stakes decisions based on low quality information: Teacher evaluation in the race-to-the-top era. *Education Evaluation and Policy Analysis Archives*, 21, 1-71.

insights regarding a teacher's (or group of teachers') effectiveness at helping students develop
 certain tested skills.

3 School leaders or leadership teams should clearly have the authority to make the case that a 4 teacher is ineffective and that the teacher even if tenured should be dismissed on that basis. It 5 may also be the case that the evidence would actually include data on student outcomes – growth, 6 etc. The key, in our view, is that the leaders making the decision – indicated by their presentation 7 of the evidence – would show that they have reasonably used information to make an informed 8 management decision. Their reasonable interpretation of relevant information would constitute 9 due process, as would their attempts to guide the teacher's improvement on measures over which the teacher actually had control. $(p. 19)^{22}$ 10

Category	Measure	Operationlized
Prior	Prior Reading	Students are only included in the model if they have a pretest score.
Performance	C C	Model controls for reading and math pretest scores in the calculation for
	Prior Math	both subjects.
		Continuous variable using ISAT scale score or NWEA RIT score
School	Grade Level	Regressions are estimated separately for each grade and subject.
Covariates		Therefore each of the coefficients has a different value in each grade and
		subject.
		Aggregation to school or teacher level occurs after grade-level scores are
		standardized.
Student	Gender	Male = 0, Female = 1
Covariates		
	Race/Ethnicity	White
		African-American
		Hispanic
		Asian/Pacific Islander
		Native American
		Other
	Low-Income	FRL-eligible = 1, non-eligible = 0
	Status	
	ELL Status	Students excluded from the model if:
		For the ISAT model, the student was in ELL Program Years 0-5 for either
		the pretest or posttest.
		For the NWEA model, the student's most recent ACCESS Literacy score
		was less than 3.5.
		Model controls for the most recent ACCESS score.
		Set of four indicator variables:
		ACCESS score between 0 and 2
		ACCESS score between 2 and 3
		ACCESS score between 3 and 4
		ACCESS score 4 or higher
	IEP Status	Six indicators for IEP codes
		LD
		Speech
		504 plan

11 Table 10. Components of CPS Value-Added Regression Model²³

 ²² Baker, B. D., Oluwole, J., & Green, P. C. (2013). The legal consequences of mandating high stakes decisions based on low quality information: Teacher evaluation in the race-to-the-top era. *Education Evaluation and Policy Analysis Archives*, 21, 1-71. <u>http://epaa.asu.edu/ojs/article/view/1298/1043</u>

²³ September 2013 presentation: Understanding Value-Added. Lesson 3: Technical Specifications of the Value-Added Regression Model

Category	Measure	Operationlized
		EBD
		EMH
		Other
	Homelessness	Based on participation in Student in Temporary Living Situations (STLS)
		program during the most recent school year.
		Indicator variable
		Participated = 1, Did Not Participate = 0
	Mobility	Based on whether the student moved schools between the pretest and
		posttest.
		Three continuous variables
		Number of moves during the spring
		Number of moves during the summer
		Number of moves during the winter

2 3

4

12

2.2.4 Facially inappropriate measures with well understood demographic correlates dictate school ratings and thus, employment consequences

5 Here, I address briefly the application of the accountability metrics to schools, classification of 6 schools using those measures, labeling of schools on probationary status and subsequent targeting for 7 intervention. CPS accountability model provides a relatively straight line between the indicators 8 described above, performance classifications and probationary status, and eventual sanctions. Points are 9 tallied, achievement levels are designated, and probationary status determined from those achievement 10 levels. The process becomes murkier and less well documented when moving from the broad set of 11 schools classified as on probation, to those specifically targeted for corrective action.

Compiled Points →Level 3 Classification → Probationary Status → Corrective Action

13 As described in the 2010 guide:

Achievement Level 1: Shall mean the rating for:

- an elementary school that obtains a total performance score of thirty (30) or above or with at least 71% of the available performance points; or
- a high school that obtains a total performance score of twenty-eight (28) or above or with at least 66.7% of the available performance points.

Achievement Level 2: Shall mean the rating for:

- an elementary school that obtains a total performance score of twenty-one (21) to twenty-nine (29) or with 50%-70.9% of the available performance points; or
- a high school that obtains a total performance score of eighteen and two-thirds (18.67) to twentyseven and two-thirds (27.67) or with 44%-66.6% of the available performance points.

Achievement Level 3: Shall mean the rating for:

- an elementary school that obtains a total performance score of twenty (20) or below or with less than 50% of the available performance points; or
- a high school that obtains a total performance score of eighteen and one-third (18.33) or below or with less than 44% of the available performance points.

15 <u>https://www.cpsboe.org/content/actions/2010_07/10-0728-PO4.pdf</u>

16

- 1 Below is a list of corrective measures which may follow from being classified as on probation, which is a
- 2 function of being classified primarily as Achievement Level 3, but also includes some Achievement Level
- 3 2 schools.

3. Additional Corrective Measures: Schools placed on Probation that, after at least one year, fail to make adequate progress in correcting deficiencies are subject to the following actions by the approval of the Board, after an opportunity for a hearing:

- a. Ordering new local school council elections;
- b. Removing and replacing the principal;
- c. Replacement of faculty members, subject to the provisions of Section 24A-5 of the Illinois School Code;
- d. Reconstitution of the attendance center and replacement and reassignment by the CEO of all employees of the attendance center;
- e. Intervention under Section 34-8.4 of the Illinois School Code;
- f. Operating an attendance center as a contract turnaround school;
- g. Closing of the school; or
- h. Any other action authorized under Section 34-8.3 of the Illinois School Code

The Law Department shall develop and disseminate hearing procedures for hearings required before taking any of the corrective actions specified above.

4

5 https://www.cpsboe.org/content/actions/2010_07/10-0728-PO4.pdf

6 Items 3b through 3g all include the possibility of staff dismissal and/or reassignment including 7 both principals and teachers. These corrective measures are a direct consequence of probationary status 8 (as stated in the policy), which is a direct consequence of low point totals on the indicators addressed 9 previously. A school does not get to this last step – intervention – unless first classified as "Level 3" (in 10 some cases Level 2) and assigned to probation status, classifications which are determined by point 11 accumulation on the indicators. Thus, the connection between these indicators and any employment 12 consequences that follow from being targeted for interventions such as "turnaround," matters.

The majority of these corrective measures involve employment action, including dismissal. Yet,the measures used for getting to this stage, as previously explained, involve:

15 16

17

- 42.5% of weight is on measures which largely capture disparities in student racial, ethnic and socio-economic backgrounds;
- Another 42.5% of weight is placed on measures which capture a) changes in student backgrounds
 from one cohort to the next, b) changes in the tests (or items) and/or familiarity with them, or c)
 statistical noise/junk;
- Only 15% weight at the elementary level is placed on indicators which attempt (though insufficiently) to isolate school effect on the underlying measures.
- At the high school level, even the "growth" indicator, the % making expected gains on EPAS,
 does not attempt to attribute (via statistical modeling) that growth (or the share of kids making
 expected growth) to schools.

26

At best, 15% of the weight for elementary schools only, in determining probationary status is placed on a measure which on its face attempts to isolate school effectiveness (at influencing student outcomes). And even that measure is problematic in terms of its precision or accuracy for isolating school, and especially employee, effectiveness. The vast majority of measures used for determining school effectiveness
leading to employment consequences make no attempt whatsoever to evaluate teacher effectiveness. For
schools for which value-added measures are unavailable, the school evaluation system in its entirety
makes no attempt to discern teacher effectiveness, but nonetheless imposes employment consequences.

5 **3.0** Measures unrelated to job performance are determining employment

6 consequences

7

Here, I begin my statistical summary of data on Chicago Public Schools. To summarize, the 8 9 accountability indicators used, as outlined above, are largely reflective of variations in student race and 10 socio-economic status, in this highly racially and economically segregated city and school district. Those accountability indicators, as explained above, determine accountability status, inclusive of probationary 11 status, which in select cases leads to specific interventions and employment consequences. If the schools 12 13 identified for probationary status are racially disproportionate, if follows that any subset of those schools 14 will be racially disproportionate with respect to the citywide student population. But these are student 15 demographics, not teacher demographics.

Section 3.1 illustrates the correlations between each indicator used and school level student demographics (across years 2009-2013). Section 3.2 applies logistic regression analysis to illustrate the extent to which school level student demographics are predictive of a school a) receiving fewer total points, b) being assigned level 3 status, c) being put on probation and d) being among those schools assigned to turnaround status (cumulatively between 2009 and 2013) among those schools originally classified as "level 3."

22 Of concern in this report is how Chicago Public Schools ends up applying these accountability 23 indicators in ways that yield racially disparate employment consequences, as illustrated in Figure 4 of the 24 report provided by Jonathan Walker (2016.8.12). Defendant's witness Blanchflower's statistical finding 25 that the policy is not racially disparate when accounting for "performance points" (2016.9.15, p.20) 26 accumulated under the rating system is akin to saying the policy doesn't discriminate against minority 27 teachers, but instead relies on a performance point scheme that discriminates against low income and 28 minority children who are disproportionately taught by minority teachers. These are precisely the well 29 understood connections which I validate statistically in this section.

30 31

3.1 Measures used by CPS for determining school ratings are racially disparate

Table 11 summarizes the demographic correlates (partial correlations, across years) of each indicator for elementary schools. The table applies "conditional formatting" (reds and greens to lower and higher values) to highlight higher and lower correlations. The last column of the table shows the rsquared value for a regression model including each of the demographic measures.

36 37

- Demographics alone explain 73% of the variation in the ISAT Math and Reading Current Status Indicators
- Demographics alone explains 54% of the variation in the ISAT Science Current Status
 Indicator
- Demographics alone explains 72% of the variation in the ISAT Composite, all grades Current
 Status

- 1 2 3
- Demographics alone explains 56% of the variation in the ISAT Composite, Highest Grade Current Status

4 That is, school demographics are a major determinant of indicators of current status. Notably,
5 demographics (and year) predict much less variation in trend indicators, largely because those indicators
6 are junk, and likely do not reflect any meaningful variation.

Demographics also predict much less variance in the value-added measures, in part, because
those measures directly control for demographics in their statistical attempt to isolate school effects on
student outcomes.

10 11

12

13

Correlations between race and current status measures are all negative and sizeable.

- ISAT Math, Reading and Science all have partial correlations with school percent black below -.50
- ISAT Math, Reading and Science all have partial correlations with school percent black or
 Hispanic below -.50
- 16 17

18

- ISAT composite measures have partial correlations with school percent black or Hispanic below -.60
- 19 Correlations between racial composition and trend measures are a mixed bag.

The negative correlations between value-added estimates and race raise some concerns that the applied models fail to sufficiently isolate school effects, retaining some racial disparity which may or may not be valid representation of actual school effectiveness differences. But again, at least these measures have made some attempt. Further, the extent of negative racial correlation in the value added measures is

24 much smaller than in the current status measures.

25 Table 11. Correlates of Elementary School Rating Components

			Parti	al Correlation	(across y	years 200	9-2013)	Regression
Measure	# Points	Туре	% Black	% Black or Hispanic	% FRL	% ELL	% Special Ed	Variance Explained (R2 ALL)
1. ISAT Math	6	Current status	-0.54	-0.56	-0.55	0.21	-0.33	0.73
		Trend	0.20	0.15	0.17	-0.07	-0.05	0.04
2. ISAT Reading	6	Current status	-0.53	-0.63	-0.65	0.16	-0.29	0.73
		Trend	0.04	0.08	0.10	0.05	-0.04	0.03
3. ISAT Science	6	Current status	-0.57	-0.58	-0.56	0.24	-0.22	0.54
		Trend	0.14	0.12	0.17	-0.07	-0.02	0.04
4. ISAT Composite (All Grades)	6	Current status	-0.38	-0.71	-0.80	-0.03	-0.17	0.72
		Trend	-0.12	-0.22	-0.20	0.04	-0.15	0.09
5. ISAT Composite (Highest Grade)	6	Current status	-0.36	-0.64	-0.70	0.00	-0.15	0.56
		Trend	-0.06	-0.09	-0.10	0.02	-0.08	0.02
6. Attendance	6	Current status	-0.52	-0.35	-0.31	0.33	-0.49	0.55
		Trend	0.09	0.06	0.07	-0.08	-0.04	0.20
7. Value Added ISAT Reading	3		-0.24	-0.24	-0.22	0.07	-0.05	0.07
8. Value Added ISAT Math	3		-0.09	-0.16	-0.12	0.00	-0.08	0.03
Data Sources:								

Data Sources:

Performance Policy Results: <u>http://schoolreports.cps.edu/cpsedu/schooldata/2013_PerformancePolicy_Results_03262014.xls</u> Merges with School Demographics by year: <u>http://www.cps.edu/SchoolData/Pages/SchoolData.aspx</u> Data and code provided as attachment

26

27

1 Table 12 shows the correlates for high school rating components.

2

5

- The dropout rate, as might be expected, is modestly positively correlated with race and income (in this case, a positive correlation not being a good thing);
 - The freshman on track rate is modestly negatively correlated with race and income;
- The test-score based status measures are quite strongly, negatively correlated with school racial composition;
- 8 Attendance, as expected, is modestly negatively correlated with school racial composition;
- EPAS gain measures are modestly negatively correlated with school racial composition,
 consistent with findings on similar growth modeling methods which fail to include richer sets of
 covariates.
- 12

13 The vast majority of high school indicators reflect, at least modestly, and in many cases quite strongly,

14 racial and economic disparities across schools. None of these indicators is designed to isolate the

15 effectiveness of schools from student backgrounds and community context.

Partial Correlation (across years Regressio 2009-2013) n % Black % Variance % # % Special Explained orPoints Hispanic % FRL ELL Êd $(\hat{R2} ALL)$ Black Measure Туре One Year Drop Out Rate 0.05 1 6 Current status 0.2'0.21 0.20 -0.14 0.11 Trend 0.10 0.04 -0.04 -0.07 0.05 2. Freshman On-Track Current status -0.29 -0.29 -0.34 -0.05 -0.36 0.25 6 Trend 0.04 0.09 0.13 0.09 0.10 0.04 -0.74 3. ACT Score 6 Current status -0.43 -0.69 -0.07 -0.62 -0.23 -0.22 -0.20 0.00 -0.29 0.13 Trend PSAE Reading -0.39 -0.74 4. 2 Current status -0.67 -0.12 -0.64 0.74 Trend -0.04 -0.05 -0.02 0.00 -0.09 0.09 5. PSAE Math 2 Current status -0.48 -0.62 -0.66 -0.02 -0.60 0.65 -0.14 -0.06 -0.04 0.00 -0.12 0.05 Trend -0.59 6. PSAE Science 2 Current status -0.46 -0.70 -0.75 -0.07 0.74 -0.14 0.12 -0.11 -0.08 -0.06 0.01 Trend 7. Attendance 6 Current status -0.33 -0.28 -0.32 0.12 -0.12 0.22 Trend 0.02 0.04 0.04 -0.02 -0.02 Students Enrolled in AP or IB -0.08 3 Trend -0.05 -0.02 -0.08 -0.11 8. 9 Students Scoring 3+ on AP or 4+ -0.08 -0.08 0.05 3 Trend -0.12 -0.04 0.04 on IB Exams 10. Students Making Expected EPAS 3 -0.35 -0.48 -0.55 -0.04 Status -0.48 0.47 Reading Gains 11. Students Making Expected EPAS -0.32 -0.37 -0.43 Math Gains 3 Status -0.38 0.11 0.33 Data Sources: Performance Policy Results: http://schoolreports.cps.edu/cpsedu/schooldata/2013 PerformancePolicy Results 03262014.xls Merges with School Demographics by year: http://www.cps.edu/SchoolData/Pages/SchoolData.aspx

16 Table 12. Correlates of High School Rating Components

17

- 18
- 3.2 Student race remains a determinant of accountability status
- 19

Table 13 displays the results of a regression analysis relating school racial composition to the percent of possible points obtained under the rating system.

22

Data and code provided as attachment

- For each 1% difference in the percent of student population that is black, the percent of possible points obtained goes down by .215 (such that a 5% difference in % black would be associated with greater than 1% decrease in percent possible points attained);
 - For each 1% difference in the percent of student population that is black or Hispanic, the percent of possible points obtained goes down by .539 (such that a 2% difference in percent black or Hispanic would be associated with greater than 1% decrease percent possible points attained).
- 7 8

2

3

4

5

6

9 Both were statistically significant, and of important, policy relevant magnitude.

10 Table 13. Schools with higher shares of black, or black or Hispanic students have lower cumulative

11 *point totals*

	% Blac	κ.	% Black or H	ispanic			
	coef	se	coef	se			
% Black	-0.215***	0.009					
% Black or Hispanic			-0.539***	0.016			
High School	-9.265***	0.959	-8.321***	0.889			
2009 (Baseline)							
2010	3.758***	1.190	3.725***	1.101			
2011	7.001***	1.182	7.042***	1.094			
2012	7.152***	1.178	7.084***	1.089			
2013	7.627***	1.179	7.545***	1.090			
Intercept	62.669***	0.967	98.412***	1.597			
note: *** p<0.01, ** p<0.05, * p<0.1	-	•	•				
Data Sources:							
Performance Policy Results: http://schoolreports.cps.edu	u/cpsedu/schooldata/2013_Pe	rformancePolicy_Re	sults_03262014.xls				
Merges with School Demographics by year: http://www	cps_edu/SchoolData/Pages/S	choolData aspy					

Merges with School Demographics by year: http://www.cps.edu/SchoolData/Pages/SchoolData.aspx

Data and code provided as attachment

12

Table 14 displays the logistic regression results predicting the likelihood that a school is assigned to "Level 3" status. Table 14 specifically explores the influence of racial composition above and beyond the value-added estimates for the school (the one attempt at isolating school effectiveness). That is, above and beyond CPS's own best attempt at isolating effectiveness, does school racial composition predict the likelihood that a school is assigned to "Level 3" status? Prior partial correlations suggest this would be the case, because the rating system is more heavily dependent on racially disparate status measures than it is on the value-added measures. Here, I find:

- 20
- For a 1% difference in school % black population, the likelihood of being assigned to level 3 increases by 2.3% (a school with 1% greater black enrollment share is 1.023 times as likely to be classified as level 3);
- For a 1% difference in % black and Hispanic population, the likelihood of being assigned to level
 3 increases by 10.9% (a school with 1% greater black and Hispanic enrollment share is 1.109
 times as likely to be classified as level 3).
- 27

28 Both were statistically significant, and of important, policy relevant magnitude. This racial disparity exists

- 29 above and beyond the one measure which attempts to isolate "effectiveness" (as estimated by relative
- 30 association with change in test scores).

1 Table 14. Schools with higher shares of black, or black or Hispanic students are more likely to achieve

2 "Level 3" status, even when controlling for value-added

	% Blac	ek	% Black o	r Hispanic
	Odds Ratio	SE	Odds Ratio	SE
% Black	1.023***	0.002		
% Black or Hispanic			1.109***	0.011
Reading VA	0.485***	0.034	0.472***	0.033
Math VA	0.515***	0.032	0.561***	0.033
2009 (Baseline)				
2010	1.014	0.202	1.070	0.214
2011	0.525***	0.107	0.574***	0.116
2012	0.524***	0.107	0.577***	0.117
2013	0.673*	0.137	0.726	0.145
Intercept	0.187***	0.033	0.000***	0.000

Performance Policy Results: http://schoolreports.cps.edu/cpsedu/schooldata/2013 PerformancePolicy_Results_03262014.xls Merges with School Demographics by year: http://www.cps.edu/SchoolData/Pages/SchoolData.aspx Data and code provided as attachment

3

4 Table 15 shows the results of logistic regression models predicting the likelihood of being assigned to 5 probationary status, also with controls for value-added estimates. These results are similar to those for 6 being assigned to level 3, but the racial disparities are slightly greater.

7 8

9 10

For a 1% difference in school % black population, the likelihood of being assigned to Probation • increases by 2.7% (a school with 1% greater black enrollment share is 1.027 times as likely to be put on probation);

- For a 1% difference in % black and Hispanic population, the likelihood of being assigned to level 11 • 12 3 increases by 14.5% (a school with 1% greater black and Hispanic enrollment share is 1.145 13 times as likely to be put on probation).
- 14

15 Both were statistically significant, and of important, policy relevant magnitude. This racial disparity exists above and beyond the one measure which attempts to isolate actual "effectiveness." 16

17 Table 15. Schools with higher shares of black, or black or Hispanic students are more likely to be

18 assigned probation status, even when controlling for value-added

	% Bla	ck	% Black or I	Hispanic	
	Odds Ratio	SE	Odds Ratio	SE	
Total Percent of Possible Points					
2011 (baseline)					
2012	0.928	0.161	0.930	0.160	
2013	0.986	0.172	0.963	0.166	
% Black	1.027***	0.002			
% Black or Hispanic			1.145***	0.017	
Reading VA	0.581***	0.053	0.612***	0.056	
Math VA	0.666***	0.056	0.736***	0.060	
Intercept	0.159***	0.025	0.000***	0.000	
note: *** p<0.01, ** p<0.05, * p<0.1 Data Sources:	· · ·	·	·		

Performance Policy Results: http://schoolreports.cps.edu/cpsedu/schooldata/2013 PerformancePolicy Results 03262014.xls Merges with School Demographics by year: http://www.cps.edu/SchoolData/Pages/SchoolData.aspx Data and code provided as attachment

Table 16 presents the logistic regression results of models predicting which elementary schools were, at any point during the period, assigned to turnaround status, among those schools which were assigned to Level 3 status. That is, above and beyond the first cut, to what extent is there additional racial disparity in the identification of turnaround schools? Table 16 shows:

- For a 1% difference in school % black population, the likelihood of being assigned to turnaround increases by 1.7% (a school with 1% greater black enrollment share is 1.017 times as likely to be identified for turnaround, among those assigned to Level 3);
- For a 1% difference in % black and Hispanic population, the likelihood of being assigned to level
 3 increases by 41.7% (a school with 1% greater black and Hispanic enrollment share is 1.417
 times as likely to be identified for turnaround, among those assigned to Level 3).
- 12

5

Here, the coefficients on the value-added indicators also provide some useful insights. While schools with higher reading value added were less likely to be identified for turnaround, schools with higher math

14 Inglief reading value added were less factly to be identified for turnaround. That is, among those schools with

16 low average status performance (level 3 schools), those showing greater growth in mathematics (holding

17 race and reading gains constant), were MORE likely to be classified for turnaround (p<.10).

18 Table 16. Elementary Schools with higher shares of black, or black or Hispanic students are more

likely to be assigned turnaround status, even when controlling for value-added & among those already
 assigned Level 3 status

	% Blac	ek	% Black or H	Iispanic
	Odds Ratio	SE	Odds Ratio	SE
% Black	1.017***	0.006		
% Black or Hispanic			1.417***	0.190
Reading Value Added	0.718***	0.091	0.712***	0.089
Math Value Added	1.208*	0.126	1.215*	0.127
2009				
2010	1.435	0.583	1.420	0.572
2011	1.163	0.507	1.397	0.610
2012	0.793	0.394	1.010	0.504
2013	1.231	0.556	1.550	0.707
Intercept	0.018***	0.011	0.000***	0.000

Data Sources:

Performance Policy Results: <u>http://schoolreports.cps.edu/cpsedu/schooldata/2013_PerformancePolicy_Results_03262014.xls</u> Merges with School Demographics by year: <u>http://www.cps.edu/SchoolData/Pages/SchoolData.aspx</u> Data and code provided as attachment

21

Table 17 presents the logistic regression results of models predicting which high schools were, at any point during the period specified, assigned to turnaround status, among those schools which were initially assigned to Level 3 status. That is, above and beyond the first cut, to what extent is there additional racial disparity in the identification of turnaround schools? Table 12 shows:

- 26
- For a 1% difference in school % black population, the likelihood of being assigned to turnaround increases by 5% (a school with 1% greater black enrollment share is 1.050 times as likely to be identified for turnaround, among those assigned to Level 3);

For a 1% difference in % black and Hispanic population, the likelihood of being assigned to level
3 increases by 17% (a school with 1% greater black and Hispanic enrollment share is 1.170 times
as likely to be identified for turnaround, among those assigned to Level 3).

4 Table 17. High Schools with higher shares of black, or black or Hispanic students are more likely to be 5 assigned turnaround status among those already assigned Level 3 status

	% Blac	ek	% Black or H	lispanic	
	Odds Ratio 1.050*** 1.015 0.714 0.840 0.626	SE	Odds Ratio	SE	
% Black	1.050***	0.016			
% Black or Hispanic			1.170**	0.087	
2009					
2010	1.015	0.606	1.082	0.608	
2011	0.714	0.449	0.880	0.527	
2012	0.840	0.494	1.117	0.627	
2013	0.626	0.410	0.847	0.534	
Intercept	0.004***	0.006	0.000**	0.000	

Performance Policy Results: <u>http://schoolreports.cps.edu/cpsedu/schooldata/2013_PerformancePolicy_Results_03262014.xls</u> Merges with School Demographics by year: <u>http://www.cps.edu/SchoolData/Pages/SchoolData.aspx</u> Data and code provided as attachment

6

7 Schools (and their enrollments by year) included as turnarounds any time during the period are listed in8 Table 18.

In conclusion, student performance level measures which dominate the point calculations for
school ratings are strongly associated with student race. By contrast, measures which at least attempt to
isolate (though insufficiently) school effects on student outcomes, are substantively less racially disparate.
The likelihoods that a school a) receives low point totals, b) is assigned "level 3" status and c) is placed

13 on probation are each significantly associated with the racial composition of student enrollments.

4	
1	
_	

Table 2	18
---------	----

			year			
Total	2013	2012	2011	2010	2009	School Name
1,444	0	363	351	377	353	BETHUNE
3,635	788	771	694	612	770	BRADWELL
2,473	463	504	507	488	511	CASALS
6,00	965	827	1,106	1,438	1,666	CHICAGO VOCATIONAL HS
69	0	0	0	353	346	COPERNICUS
2,763	387	476	513	720	666	CRANE HS
2,36	474	501	455	464	470	CURTIS
2,582	549	550	480	492	511	DENEEN
2,43	528	537	499	444	429	DULLES
2,01	168	318	431	530	569	DYETT HS
4,36	508	688	784	1,190	1,196	FENGER HS
1,248	270	239	211	245	283	FULLER
2,608	471	466	488	529	654	FULTON
818	0	0	259	263	296	GUGGENHEIM
3,493	518	622	669	771	911	HARPER HS
2,35	441	475	455	463	519	HARVARD
2,78	502	512	554	591	630	HERZL
2,85	610	574	579	548	540	HOWE
2,06	402	724	364	297	281	JOHNSON
99	325	339	334	0	0	LANGFORD
603	0	0	116	164	322	LATHROP
7,24	1,332	1,385	1,435	1,511	1,579	MARQUETTE
4,38	677	730	772	998	1,205	MARSHALL HS
1,57	355	344	317	278	284	MORTON
3,45	647	593	687	746	784	PHILLIPS HS
3,06	513	541	587	667	757	PICCOLO
52	0	0	144	185	196	PRICE
620	0	0	107	216	297	REED
2,45	440	461	450	520	584	SHERMAN
1,88	339	364	362	401	419	SMITH
2,81	535	538	565	561	614	STAGG
2,90	400	463	467	680	899	TILDEN HS
1,48	370	329	398	388	0	WOODSON
47	0	0	0	0	479	WOODSON SOUTH
83,50	13,977	15,234	16,140	18,130	20,020	Total

Digitaliy signed by Bruce Baker DN: cn=Bruce Baker, o, ou, email=educpolicy@gmail.com, c=US Date: 2017.03.03 14:49:06 -05'00'

7 Bruce D. Baker

IV. **ATTACHMENTS** 8

9

2 3

4

5

6

- A. Curriculum Vitae of Bruce D. Baker (2-10-17) 10
- B. Stata Log of School Level Analyses (bbaker_cps_schlacctblty_2.10.17) 11
- C. Stata Log of Teacher/Student Race Analyses (bbaker_stu_teacher_link_2.10.17) 12
- D. Materials considered in preparation of this report 13

ATTACHMENT A

BRUCE D. BAKER

Professor

Educational Theory, Policy and Administration Graduate School of Education Rutgers, The State University of New Jersey 10 Seminary Place New Brunswick, NJ 08901-1183 <u>bruce.baker@gse.rutgers.edu</u> <u>schoolfinance101@wordpress.com</u>

A. EDUCATION

1997, Doctor of Education
 Teachers College, Columbia University
 Department of Organization and Leadership
 Dissertation: A Comparison of Statistical and Neural Network Models for Forecasting Educational Spending
 Advisor: Craig E. Richards

1989, Master of Arts University of Connecticut Department of Educational Psychology Program in Teaching the Talented Advisor: Joseph S. Renzulli

1987, Bachelor of Arts Lafayette College Biology

B. ACADEMIC APPOINTMENTS

- 2011 Present: Rutgers, The State University of New Jersey Professor I Educational Theory, Policy and Administration
- 2008 Present: Rutgers, The State University of New Jersey Associate Professor Educational Theory, Policy and Administration
- 2002 2008: University of Kansas, Lawrence Associate Professor, Teaching and Leadership Program in Educational Administration
- 1997 2002: University of Kansas, Lawrence Assistant Professor, Teaching and Leadership Program in Educational Administration Research Associate: Policy Research Institute

1996 - 1997: Teachers College, Columbia University Instructor, Organization and Leadership Program in Educational Administration

C. RELATED TEACHING & ADMINISTRATIVE EXPERIENCE

1993 – 1997, The Ethical Culture Fieldston Schools, NY Instructor of Science
1992 – 1993, Pocantico Hills Central School, NY Coordinator of Gifted and Talented Programs
1989 – 1992, Mastricola Middle School, NH Coordinator of Gifted and Talented Programs

1987 – 1988, Randolph-Macon Academy, VA

Instructor of Biology

1994 – 1997, College Gifted Programs, Summer Institute for the Gifted, NJ/PA/NY Site Director

D. HONORS

- 2017 Ranked 92nd in RHSU Education Week Edu-Scholar Public Influence.
- 2016 Ranked 81st in RHSU Education Week Edu-Scholar Public Influence.
- 2015 Rutgers Graduate School of Education Distinguished Faculty Lecture. Invited by GSE Alumni Association
- 2015 Ranked 64th in RHSU Education Week Edu-Scholar Public Influence.
- 2014 Askwith Forum Presenter, Is School Funding Fair? Harvard Graduate School of Education
- 2014 Ranked 64th in RHSU Education Week Edu-Scholar Public Influence.
- 2013 AERA Division L Policy Report Award for Baker, B. D., Sciarra, D. G., & Farrie, D. (2010). Is School Funding Fair?: A National Report Card. Education Law Center.
- 2013 Ranked 40th in RHSU Education Week Edu-Scholar Public Presence.
- 2012 School Finance 101 Blog nominated for Bammy Award, Education Commentators Category, Academy of Education Arts & Sciences, <u>http://www.bammyawards.com/</u>
- 2011 Outstanding Faculty Research Award, Rutgers Graduate School of Education Alumni Association
- 2011 Journal of Education Finance Scholarly Paper Award, National Education Finance Conference (Coauthor, Matthew J. Ramsey)
- 2010 Invited Lecturer: Jerry Miner Lecture Series. Maxwell School, Syracuse University. Center for Policy Research. <u>http://www-cpr.maxwell.syr.edu/efap/Jerry_Miner/Lecture_Series.htm</u>
- 2007 Present: Appointed Research Fellow, Education Policy Research Unit/Education and the Public Interest Center (EPRU/EPIC)
- 2001, National Center for Education Statistics/American Education Finance Association

New Scholars Program

1998, National Center for Education Statistics/American Educational Research Association

Institute on Statistics for Policy Analysis

1996, University Council on Educational Administration

Graduate Student Research Seminar

E. SELECTED EXTERNALLY FUNDED RESEARCH (RECENT GRANTS & CONTRACTS)*

2017	1.	Kahlenberg, R., Baker, B., Levin, J., Carnevale, A., Zuckerman, M., Shireman, R. (2017) Making Community Colleges Engines for Social Mobility: A Century Foundation Working Group on Financial Resources. William T. Grant Foundation (\$30k subcontract)
	2.	Kim, B., Baker, B. (2017) Leveraging School Finance Research to Increase Education Equity and Opportunity for All Students. William T. Grant Foundation (\$200,000)
2016	3.	Levin, J., Baker, B.D. et al. (2016) Evaluation of "Commensurate Funding" for Maryland Charter Schools. Maryland Department of Education (\$36k subcontract)
2015	4.	Baker, B.D. (2015-2016) Indicators of Educational Inequality in the U.S. William T. Grant Foundation (\$257,039)
2014	5.	Baker, B.D., Levin, J. Research to Inform the Development of a Pennsylvania Basic Education Funding Formula. William Penn Foundation (\$60k)
	6.	Levin, J., Chambers, J., Manship, K., Baker, B.D., Goertz, M. Feasibility Study on Improving the Quality of School Level Expenditure Data. Institute for Education Sciences, U.S. Dept. of Education [RFTO No. PEPP130018]
2013	7.	Baker, B.D. Poverty, Children's Health and Public School Funding. With <i>ChangeLab</i> <i>Solutions</i> (Oakland, CA) Funded by Robert Wood Johnson Foundation [Grant I.D. 70352] (\$20,000)
	8.	Baker, B.D., Miron, G. Organization for Economic Cooperation and Development. Education Indicators at a Glance. (€5,000)
	9.	Baker, B.D., Coley, R. Understanding Child Poverty: Implications for Education Policy. Educational Testing Service (\$20,000)
2011	10.	Baker, B.D., DiCarlo, M. Revisiting the Age Old Question: Does Money Matter in Education? (Shanker Institute, \$6000)
	11.	Baker, B.D., Libby, K., Wiley, K. Evaluating Financial Resources and Equity Implications of <i>High Flying Charter School Networks</i> . (National Education Policy Center & Shanker Institute, \$6000)
	12.	Stealth Inequities: Hidden Disparities in State School Finance Systems. Center for American Progress (\$17,500). With Sean Corcoran of NYU.

^{*} Does not include reports written as expert testimony for litigation or other support (testimony, etc.) for state constitutional or federal litigation.

13.	Alternative Measures of Poverty. With Jay Chambers & Jesse Levin (American Institutes
	for Research) and Lori Taylor (Texas A&M University). West & Midwest Regional Labs.
	(approx. \$200k total)

- 2009
- 14. Evaluation of Undergraduate Student Degree Completion Pathways and "Cost of Attainment". University of Texas at Austin. Co-Pi with Christopher Morphew, University of Iowa, Scott L. Thomas, Claremont Graduate School & Harrison Keller, University of Texas at Austin.
 - 15. Evaluation of Spending Patterns and Philanthropic Contributions to New York City Charter Schools. Education and the Public Interest Center. \$6,000
 - 16. Evaluation of teacher workforce and labor markets in Newark New Jersey. Funded by the Ford Foundation in collaboration with Rutgers University at Newark. Alan Sadovnik, Project Director. (\$18k subcontract on \$125k grant)
 - 17. Development of an alternative indicator system for evaluating state school funding systems. *Education Law Center of New Jersey & Educational Testing Service*. Funded by the Ford Foundation. (\$25k subcontract)
 - 18. Evaluating the principal preparation pipeline for Wisconsin public schools. With Matthew Clifford (Learning Point Associates) and Carolyn Brown (Fordham University). Midwest Regional Education Lab
- **2008** 19. Evaluating the *Costs of Private Schooling in America*. Education and the Public Interest Center. University of Colorado/Arizona State University. \$4,000.
- 2007 20. Barnett, W.S., Baker, B.D., Bausmith, J., Burzichelli, C., J., Firestone, W., Goertz, P., Mackey, P. Evaluating the Productivity and Efficiency of New Jersey's Public Schools.
 - 21. Changing demography of rural communities: Implications for state education policy. Funding Source: <u>U.S. Department of Agriculture</u>. Subcontract with Tennessee State University (Gary Peevely, PI). \$54,000 subcontract (through 2009)
- 2006 22. Evaluating wage variation and marginal costs associated with student needs and school and district characteristics in Washington. Funding Source: <u>Washington Education</u> <u>Association</u>. Subcontract with Education Policy Improvement Center (U. of Oregon, David Conley, PI). \$50,000 subcontract (included course buy-out for Spring 2006)
 - 23. Evaluation of Hawaii's Weighted Student Funding Program. Funding Source: <u>Hawaii</u> <u>Board of Education.</u> Co-PI with Scott Thomas, U. of Georgia. \$24,440 total.
- 2005 24. Evaluating wage variation and marginal costs associated with student needs and school and district characteristics in Wyoming. Funding Source: <u>Wyoming Legislature</u>.
 Subcontract to Lawrence O. Picus and Associates. \$40,000 subcontract (\$1 million + total).
- 2004 25. Texas School Finance Project. Funding Source: <u>Joint Select Committee on School Finance</u> <u>of the Texas Legislature</u>. Co-PI with Lori Taylor, Tim Gronberg & Dennis Jansen of Texas A&M. \$30,000+ subcontract.
- 2002 26. Design and simulation of state school finance policy options for the State of Texas.
 2003 Funding Source: <u>Texas Governor's Office.</u> (included 50% buyout of full-year salary + 45% KU indirect)
 - 27. Estimating Instructional Costs for Academic Programs: A resource cost model approach. Funding Source: <u>Association for Institutional Research</u>. Co-PI with Christopher Morphew.

\$28,108 total.

F. BOOKS

- TBD 1. Baker, B.D. Financing America's Schools. Harvard Education Press.
- Baker, B.D., Green, P.C., Richards, C.E. (2008) *Financing Education Systems*. Upper Saddle River, NJ: Merrill/Prentice-Hall, 448 pages
- Baker, B.D., Richards, C.E. (2004) *The Ecology of Educational Systems: Data and Models for Improvisational Leading and Learning*. Upper Saddle River, NJ: Merrill/Prentice-Hall. 280 pages.

G. JOURNAL[†] & LAW REVIEW[‡] ARTICLES

[i] invited, [lr] law review

- **2017** 1. Weber, M., Baker, B.D. (in press) Do For-Profit Managers Spend Less on Schools and Instruction? A national analysis of charter school staffing expenditures. *Educational Policy*
- 2016 2. Baker, B.D. (2016) School Finance and the Distribution of Equal Educational Opportunity in the Post-Recession U.S. *Journal of Social Issues* 72 (4), 629-655
 - 3. Baker, B.D., Weber, M. (2016) Beyond the Echo-Chamber: State Investments and Student Outcomes in U.S. Elementary and Secondary Education. *Journal of Education Finance* 42 (1) 1-27
 - Green, P.C., Baker, B.D., Oluwole, J., Mead, J.F. (2016) Are We Heading Toward a Charter School 'Bubble'? Lessons from the Subprime Mortgage Crisis. *University of Richmond Law Review* 50 (3) 783-808.
 - Baker, B. D., & Weber, M. (2016). State school finance inequities and the limits of pursuing teacher equity through departmental regulation. *Education Policy Analysis Archives*, 24(47). <u>http://dx.doi.org/10.14507/epaa.v24.2230</u>
- Green, P.C., Baker, B.D., Oluwole, J. (2015) The Legal Status of Charter Schools in State Statutory Law. University of Massachusetts Law Review
 - 7. Baker, B.D., Libby, K., Wiley, K. (2015) Charter School Expansion & Within District Equity: Confluence or Conflict? *Education Finance and Policy*
- 2014 8. Baker, B.D. (2014) America's Most Financially Disadvantaged Local Public School Districts. *Journal of School Business Management*. 26 (2) 10-19[*i*]
 - Baker, B. D. (2014). Evaluating the recession's impact on equity & adequacy of state school finance systems. Education Policy Analysis Archives, 22 (91) Retrieved [date], from http://epaa.asu.edu/ojs/article/view/1590
 - 10. Green, P.C., Baker, B.D., Oluwole, J. (2014) How the Kansas Courts Have Permitted and May

[†] Peer reviewed

[‡] Editorial board reviewed, competitively accepted

Remedy Racial Funding Disparities in the Aftermath of Brown. Washburn Law Journal

- 11. Green, P.C., Baker, B.C., Oluwole, J. (2014) Having it Both Ways: How Charter Schools try to Obtain Funding of Public Schools and the Autonomy of Private Schools. *Emory Law Journal* 63 (2) 303-338
- 2013 12. Baker, B.D., Taylor, L., Chambers, J., Levin, J., Blankenship, C. (2013) Adjusted Poverty Measures and the Distribution of Title I Aid: Does Title I Really Make the Rich States Richer? *Education Finance and Policy* 8(3) 394-417
 - 13. Baker, B.D., Green, P.C., Oluwole, J. (2013) The legal consequences of mandating high stakes decisions based on low quality information: Teacher Evaluation in the Race-to-the-Top Era. *Education Policy Analysis Archives*
- 2012 14. Baker, B.D., Welner, K.G. (2012) Evidence and Rigor: Scrutinizing the Rhetorical Embrace of Evidence-based Decision-making. *Educational Researcher* 41 (3) 98-101
 - 15. Green, P.C., Baker, B.D., Oluwole, J. (2012) Legal implications of dismissing teachers on the basis of value-added measures based on student test scores. *BYU Education and Law Journal* 2012 (1)
 - 16. Baker, B.D. (2012) Re-arranging deck chairs in Dallas: Contextual constraints on within district resource allocation in large urban Texas school districts. *Journal of Education Finance* 37 (3) 287-315
- **2011** 17. Baker, B.D. (2011) Exploring the Sensitivity of Education Costs to Racial Composition of Missouri School Districts. *Peabody Journal of Education (special issue)*
 - 18. Baker, B.D., Welner, K. (2011) School Finance and Courts: Does Reform Matter, and How Can We Tell? *Teachers College Record* 113 (11) p. –
 - 19. Fuller, E., Young, M.D., Baker, B.D. (2011) Do Principal Preparation Programs Influence Student Achievement through the Building of Teacher Team Qualifications by the Principal? An Exploratory Analysis. *Educational Administration Quarterly* 46 (5)
- 2010 20. Baker, B.D., Punswick, E., Belt, C. (2010) School Leadership Stability, Principal Moves, and Departures: Evidence From Missouri *Educational Administration Quarterly* 46 (4) 523-55
 - 21. Baker, B.D., Welner, K.G. (2010) Premature celebrations: The persistence of inter-district funding disparities. *Education Policy Analysis Archives*. http://epaa.asu.edu/ojs/article/viewFile/718/831
 - 22. Baker, B.D., Ramsey, M.J. (2010) What we don't know can't hurt us? Evaluating the equity consequences of the assumption of uniform distribution of needs in Census Based special education funding. *Journal of Education Finance* 35 (3) 245-275
 - 23. Green, P.C., Oluwole, J., Baker, B.D. (2010) Getting their hands dirty: How Alabama's public officials may have maintained separate and unequal education. *West's Education Law Reporter* 253 (2) 503-520
- 2009 24. Green, P.C. Oluwole, J., Baker, B.D. (2009) No Child Left Behind: Racial Equal Educational Opportunity through School Finance Litigation. *Journal of Gender, Race and Justice* 12 (2) 285-310
 - 25. Baker, B.D. (2009) Evaluating Marginal Costs with School Level Data: Implications for the Design of Weighted Student Allocation Formulas. *Education Policy Analysis Archives* 17 (3)
 - 26. Baker, B.D., Green, P.C. (2009) Equal Educational Opportunity and the Distribution to State Aid to Schools: Can or should racial composition be a factor? *Journal of Education Finance* 34 (3) 289-323
 - Baker, B.D., Elmer, D.R. (2009) The Politics of Off-the-Shelf School Finance Reform. *Educational Policy* 23 (1) 66-105^[i]

- 2008 28. Green, P.C., Baker, B.D., Oluwole, J. (2008) Obtaining racial equal educational opportunity through school finance litigation. *Stanford Journal of Civil Rights and Civil Liberties* IV (2) 283-338
 - 29. Baker, B.D. (2008) Doing more harm than good? A commentary on the politics of cost adjustments for wage variation in state school finance formulas. *Journal of Education Finance* 33 (4) 406-440
- 2007 30. Morphew, C., Baker, B.D. (2007) On the Utility of National Data for Estimating Generalizable Price and Cost Indices in Higher Education. *Journal of Education Finance* 33 (1) 20-49
 - Baker, B.D, Orr, M.T., Young, M.D. (2007) Academic Drift, Institutional Production and Professional Distribution of Graduate Degrees in Educational Administration. *Educational Administration Quarterly* 43 (3) 279-318
 - 32. Baker, B.D., Wolf-Wendel, L.E., Twombly, S.B. (2007) Exploring the Faculty Pipeline in Educational Administration: Evidence from the Survey of Earned Doctorates 1990 to 2000. *Educational Administration Quarterly* 43 (2) 189-220
- 2006 33. Green, P.C., Baker, B.D., Oluwole, J. (2006) Race Conscious Funding Strategies in School Finance. Boston University Public Interest Law Journal 16 (1) 39-72^{LR}
 - 34. Baker, B.D. (2006) Evaluating the Reliability, Validity and Usefulness of Education Cost Studies. *Journal of Education Finance* 32 (2) 170-201 ^[1]
 - 35. Green, P.C., Baker, B.D. (2006) Urban Legends, Desegregation and School Finance: Did Kansas City really prove that money doesn't matter? *Michigan Journal of Race and Law* 12 (1) 57-105 [LR]§
 - 36. Baker, B.D., Dickerson, J. (2006) Charter Schools, Teacher Labor Market Regulation and Teacher Quality: Evidence from the Schools and Staffing Survey. *Educational Policy* 20 (5) 752-779
 - 37. Wolf-Wendel, L, Baker, B.D., Twombly, S., Tollefson, N., & Mahlios, M. (2006) Who's Teaching the Teachers? Evidence from the National Survey of Postsecondary Faculty and Survey of Earned Doctorates. *American Journal of Education* 112 (2) 273-300 (GS 7)
- 2005 38. Baker, B.D., Cooper, B.S. (2005) Do Principals with Stronger Academic Backgrounds Hire Better Teachers? Policy Implications for High Poverty Schools. *Educational Administration Quarterly* 41 (3) 449-479
 - 39. Baker, B.D., Green, P.C. (2005) Tricks of the Trade: Legislative Actions in School Finance that Disadvantage Minorities in the Post-Brown Era *American Journal of Education* 111 (May) 372-413
 - 40. Baker, B.D. (2005) The Emerging Shape of Educational Adequacy: From Theoretical Assumptions to Empirical Evidence. *Journal of Education Finance* 30 (3) 277-305
 - 41. Green, P.C., Baker, B.D. (2005) Montoy v. Kansas and Racial Disparities in School Funding: Will the Kansas Courts Get it Right this Time? *West's Education Law Reporter* April, 21 681-696
 - 42. Baker, B.D. (2005) What will it take to make Kansas School Funding "Cost-Based?" Kansas Policy Review 27 (2) 21-30 ^[i]
 - Green, P.C., Baker, B.D. (2005) History of School Finance Reform and Litigation in Kansas. Kansas Policy Review 27 (2) 2-6^[i]

[§] Ranked #1 Law Review on *impact factor* for minority, race & ethnic issues. Ranked #78 overall.

- 2004 44. Baker, B.D., Friedman-Nimz, R.C. (2004) State Policy Influences Governing Equal Opportunity: The Example of Gifted Education. *Educational Evaluation and Policy Analysis* 26 (1) 39-64
 - 45. Morphew, C.C., Baker, B.D. (2004) The Cost of Prestige: Do New Research I Universities Incur Higher Administrative Costs? *Review of Higher Education* 27 (3) 365-384
 - 46. Wood, R.C., Baker, B.D. (2004) An examination and analysis of the equity and adequacy concepts of constitutional challenges to state education finance distribution formulas. *University of Arkansas at Little Rock Law Review* 27 125 [Ir]
 - Baker, B.D., Duncombe, W.D. (2004) Balancing District Needs and Student Needs: The Role of Economies of Scale Adjustments and Pupil Need Weights in School Finance Formulas. *Journal of Education Finance* 29 (2) 97-124 ^[i]
 - Baker, B.D. (2004) A Closer Look at the Costs of Serving Children Living on the Edges: At Risk, Limited English Proficient & Gifted Children. *Educational Considerations* 32 (1) 42-54 ^[i]
- **2003** 49. Baker, B.D. (2003) State policy influences on the internal allocation of school district resources: Evidence from the Common Core of Data. *Journal of Education Finance* 29 (1) 1-24
 - 50. Baker, B.D. McIntire, J. (2003) Evaluating State School Funding for Gifted Education Programs. *Roeper Review* 26 (3) 173-179
 - 51. Baker, B.D., Friedman-Nimz, R.C. (2003) Gifted Children, Vertical Equity and State School Finance Policies and Practices. *Journal of Education Finance* 28 (4) 523-556
 - 52. Baker, B.D., Green, P.C. (2003) Commentary: The Application of Section 1983 to School Finance Litigation. *West's Education Law Reporter*. 173 (3) 679-696
- 2002 53. Baker, B.D., Richards, C.E. (2002) Exploratory Application of Systems Dynamics Modeling to School Finance Policy. *Journal of Education Finance* 27 (3) 857-884
 - 54. Baker, B.D., Friedman-Nimz, R.C. (2002) Determinants of the Availability of Opportunities for Gifted Children: Evidence from NELS '88. *Leadership and Policy in Schools* 1 (1) 52-71
 - 55. Baker, B.D., Markham, P. (2002) State School Funding Policies and Limited English Proficient Children. *Bilingual Research Journal* 26 (3) 659-680
 - 56. Baker, B.D., Friedman-Nimz, R.C. (2002) Is a Federal Mandate the Answer? If so, what was the question? *Roeper Review* 25 (1) 5-10
 - 57. Green, P.C., Baker, B.D. (2002) Circumventing Rodriguez: Can plaintiffs use the Equal Protection Clause to challenge school finance disparities caused by inequitable state distribution policies? *Texas Forum on Civil Liberties and Civil Rights* 7 (2) 141 – 165 ^[Ir]
- 2001 58. Baker, B.D. (2001) Gifted Children in the Current Policy and Fiscal Context of Public Education: A National Snapshot & Case Analysis of the State of Texas. *Educational Evaluation and Policy Analysis* 23 (3) 229-250
 - 59. Baker, B.D. (2001) Can Flexible Non-linear Modeling Tell Us Anything New About Educational Productivity? *Economics of Education Review* 20 (1) 81-92
 - 60. Baker, B.D. (2001) Living on the Edges of School Funding Policy: The Plight of At-Risk, Limited English Proficient and Gifted Children. *Educational Policy* 15 (5) 699-723
 - 61. Baker, B.D. (2001) Balancing Equity for Students and Taxpayers: Evaluating School Finance Reform

in Vermont. Journal of Education Finance 26 (4) 437-462

- 62. Baker, B.D. (2001) Measuring the Outcomes of State Policies for Gifted Education: An Equity Analysis of Texas School Districts. *Gifted Child Quarterly* 45 (1) 4-15
- 2000 63. Baker, B.D., Keller-Wolf, C., Wolf-Wendel, L. (2000) Two Steps Forward, One Step Back: Race, Ethnicity and Academic Achievement in Education Policy Research. *Educational Policy* 14 (4) 511-529 (GS 15)
 - 64. Wolf-Wendel, L., Baker, B.D., Morphew, C. (2000) Dollars & \$ense: Resources and the Baccalaureate Origins of Women Doctorates. *Journal of Higher Education* 71 (2) 165-186
- 1999 65. Baker, B.D., Richards, C.E. (1999) A Comparison of Conventional Linear Regression Methods and Neural Networks for Forecasting Educational Spending. *Economics of Education Review* 18 (4) 405 – 416
 - 66. Baker, B.D., Imber, M. (1999) "Rational Educational Explanation" or Politics as Usual? Evaluating the Outcome of Educational Finance Litigation in Kansas. *Journal of Education Finance* 25 (1) 121-139
 - Baker, B.D. (1999) Politics of the Production Function: The Influence of Political Bias on the Deductive Process. *Educational Policy* 13 (1&2) 123-135 ^[i]
- 1998 68. Baker, B.D., Richards, C.E. (1998) Equity through Vouchers: The Special Case of Gifted Children. Educational Policy 12 (4) 363-379

H. BOOK CHAPTERS

Research Compilations**

- Baker, B.D., Farrie, D., Sciarra, D. (2015) The Changing Distribution of Educational Opportunities. In Opportunity in America. Princeton, NJ, Educational Testing Service.
 - 2. Baker, B.D., Green, P.C. (2015) Conceptions of Equity and Adequacy in School Finance. *Handbook of Research in Education Finance & Policy*
 - 3. Baker, B.D., Green, P.C. (2015) The Politics of School Finance in the New Normal Era. *Handbook of the Politics of Education Association*. p.166-187
- **2012** 4. Baker, B.D., Ramsey, M.J, Green, P.C. (2012) Financing equal educational opportunity for children with disabilities. In M.L. Boscardin (ed) *Handbook of Research on Special Education Leadership*
- Baker, B.D. (2010) Review of Susan Aud's "School Choice by the Numbers: The Fiscal Effect of School Choice Programs 1990 2006," published by the Friedman Foundation for Educational Choice. In K.G Welner, P.H Hinchey, A. Molnar & D. Weitzman *Think Tank Research Quality* Information Age Publishing pp.97-108
 - 6. Baker, B.D. (2010) Review of Lisa Snell's "Weighted Student Formula Yearbook 2009," published by the Reason Foundation. In K.G Welner, P.H Hinchey, A. Molnar & D. Weitzman *Think Tank Research Quality* Information Age Publishing pp.183-200

^{**} Chapters that are essentially research articles, invited for inclusion in a compilation/research annual. Not refereed. Peer evaluated/edited.

- 2009 7. Baker, B.D., Green, P.C. (2009) Conceptions, Measurement and Application of Educational Adequacy Standards. In D.N. Plank (ed) *AERA Handbook on Education Policy*. New York: Routledge
 - 8. Baker, B.D., Green, P.C., (2009) Separate and Unequal by Design: What's the Matter with the Rising State Role in Kansas? *The Rising State in Education*. Bruce S. Cooper, Lance Fusarelli, Bonnie Fusarelli, Editors. State University of New York Press.
- Baker, B.D., Green, P.C. (2008) Politics, Empirical Evidence and Policy Design: The Case of School Finance and the Costs of Educational Adequacy. In B.S. Cooper, L. Fusarelli, J. Cibulka (eds) pp. 311 – 337. Handbook of Education Politics and Policy. New York: Routledge
 - Green, P.C., Baker, B.D. (2008) The No Child Left Behind Act and the Re-Emergence of Equal Educational Opportunity Litigation, in *Our Promise: Achieving Educational Equity for Americas Children* (M. Dyson & D. Weddle, eds., Carolina Academic Press).
 - 11. Baker, B.D., Green, P.C. (2008) Conceptions of Equity and Adequacy in School Finance. In H.F. Ladd and E.B. Fiske (eds) *Handbook of Research in Education Finance and Policy* New York: Routledge. pp. 203-221
- Cooper, B.S., Cilo, M.R. & Baker, B.D. (1999) Making the transition from school to college: The case of New York City Public Education. In *American Education Annual: Trends and Issues in the Educational Community* (1998-1999). New York, NY: Gale Research.
 - 13. Baker, B.D. (1999) Politics of the Production Function: The Influence of Political Bias on the Deductive Process. In Vance Randall and Bruce Cooper (Eds.), pp. 123-135, *Accuracy or Advocacy: The Politics of Research in Education*. Yearbook of The Politics in Education Association. Thousand Oaks: Corwin Press, Sage Publications.

Instructional

- **2001** 1. Baker, B.D. (2001) New Tools for Strategic Decision-Making: Systems Thinking Applied with ITHINK. In G. Ivory, *What Works in Computing for School Administrators?* Scarecrow Press
 - 2. Baker, B.D. (2001) Back to School: Systems Modeling and the Educational Setting. In G. Ivory, *What Works in Computing for School Administrators*? Scarecrow Press

Monograph Annuals^{††}

- Baker, B.D. (2001) Evolving Again: Environmental Pressures and Increasing Disequilibrium in Kansas School Finance. In Christopher F. Roellke (Ed.) *In Search of a More Equitable and Efficient Education System.* Proceedings of the 2001 Annual Meeting of the American Educational Research Association, Fiscal Issues, Policy, and Educational Finance – Special Interest Group. Seattle, WA.
- Baker, B.D. (2000) Full State Control Out of Control: School Finance in Kansas in the 1990s. in Brian O. Brent (Ed.) *The Political Economy of Education: the State of the States and Provinces*. Proceedings of the 1999 Annual Meeting of the American Educational Research Association, Fiscal Issues, Policy, and Educational Finance Special Interest Group. Montreal, QE.

^{††} Brief chapters that are included in professional organization annual compilations. Not refereed

I. POLICY BRIEFS/REPORTS

2017	1.	Jesse Levin, Bruce Baker, Drew Atchison, Iliana Brodziak, Andrea Boyle, Adam Hall, and Jason
		Becker (2017) Study of Funding Provided to Public Schools and Public Charter Schools in
		Maryland. Maryland Department of Education/American Institutes for Research.

- D. Atchison, J. Levin, A. Boyle, K. Manship, B.D. Baker (2017) Exploring the Quality of School -Level Expenditure Data: Practices and Lessons Learned in Nine Sites. Institute for Education Sciences. US Department of Education. <u>https://www2.ed.gov/rschstat/eval/title-i/qualityexpenditure-data/report.pdf</u>
- 2016 3. Baker, B.D. (2016) Exploring the Consequences of Charter School Expansion in U.S. Cities. Economic Policy Institute. <u>http://www.epi.org/publication/exploring-the-consequences-of-charter-school-expansion-in-u-s-cities/</u>
 - 4. Baker, B.D., Weber, M. (2016) Deconstructing the Myth of American Public Schooling Inefficiency: A Closer Look at International Data http://www.shankerinstitute.org/resource/publicschoolinginefficiency
 - 5. Baker, B.D. (2016) Does money still matter? An update. Albert Shanker Institute http://www.shankerinstitute.org/resource/does-money-matter-second-edition
 - Baker. B.D., Farrie, D., Sciarra, D. (2016) Mind the Gap: 20 years of progress and retrenchment in school funding & achievement gaps. Princeton, NJ. Educational Testing Service. <u>http://onlinelibrary.wiley.com/doi/10.1002/ets2.12098/epdf</u>
- 2015 7. Baker, B. & Miron, G. (2015). The Business of Charter Schooling: Understanding the Policies that Charter Operators Use for Financial Benefit. Boulder, CO: National Education Policy Center. Retrieved [date] from http://nepc.colorado.edu/publication/charter-revenue
 - 8. Baker. B.D., Farrie, D., Sciarra, D. (2015) Is School Funding Fair? Fourth Edition. http://schoolfundingfairness.org/National_Report_Card_2015.pdf
- 2014 9. Baker, B.D. (2014) Improving the Grade: How Localities (in States that Penalize School Absences) Can Support Student Health, School Attendance, and Educational Achievement. <u>http://changelabsolutions.org/sites/default/files/School-</u> <u>Financing_LocalPolicymakers_FINAL_09302014.pdf</u>
 - Baker, B.D. (2014) Not Making the Grade: How Financial Penalties for School Absences Hurt Districts Serving Low-Income, Chronically Ill Kids <u>http://changelabsolutions.org/sites/default/files/School-</u> Financing_StatePolicymakers_FINAL_09302014.pdf
 - Baker, B.D., Levin, J. (2014) Educational Equity, Adequacy, and Equal Opportunity in the Commonwealth: An Evaluation of Pennsylvania's School Finance System. American Institutes for Research/William Penn Foundation. <u>http://www.air.org/sites/default/files/downloads/report/AIR-EEAEO%20in%20the%20Commonwealth%20-%20Full%20Report%2010-09-14.pdf</u>
 - 12. Baker, B.D. (2014) America's Most Financially Disadvantaged School Districts and How They Got That Way. Washington, DC: Center for American Progress. <u>http://cdn.americanprogress.org/wpcontent/uploads/2014/07/BakerSchoolDistricts.pdf</u>

- 13. Baker, B.D., Farrie, D., Sciarra, D. (2014) Is School Funding Fair? 2013 Edition. Education Law Center of New Jersey, Rutgers Graduate School of Education & Educational Testing Service
- 14. Baker, B.D. (2013) Evaluating New York State's School Finance System. New York State Association of Small City School Districts.
- 2013 15. Baker, B.D. (2013) Poverty, Children's Health & Public School Funding: Consequences of conditioning state aid for schools on attendance. ChangeLab Solutions
 - 16. Coley, R., Baker, B.D. (2013) Poverty and Education: Finding the Way Forward. ETS Center for Research on Human Capital and Education. Princeton, NJ: Educational Testing Service http://www.ets.org/s/research/pdf/poverty_and_education_report.pdf
 - 17. Baker, B.D., Bathon, J. (2013) School Finance 2.0: Crafting Responsible State Policies for the Financing of Online and Virtual Schooling. Boulder, CO: National Education Policy Center http://nepc.colorado.edu/publication/financing-online-education
- 2012 18. Baker, B.D., Corcoran, S.P.(2012) The Stealth Inequalities of School Funding: How Local Tax Systems and State Aid Formulas Undermine Equality. Washington, DC. Center for American Progress. <u>http://www.americanprogress.org/wp-content/uploads/2012/09/StealthInequities.pdf</u>
 - 19. Baker, B.D., Sciarra, D., Farrie, D. (2012) Is School Funding Fair? Second Edition, June 2012. http://schoolfundingfairness.org/National_Report_Card_2012.pdf
 - 20. Baker, B.D., Libby, K., & Wiley, K. (2012). Spending by the Major Charter Management Organizations: Comparing charter school and local public district financial resources in New York, Ohio, and Texas. Boulder, CO: National Education Policy Center. Retrieved [date] from <u>http://nepc.colorado.edu/publication/spending-major-charter</u>.
 - Clifford, M., Condon, C., Greenberg, A., Williams, R., Gerdeman, R.D., Fetters, J., and Baker, B. (2012). A descriptive analysis of the principal workforce in Wisconsin (Issues & Answers Report, REL 2012–No. 135). Washington, DC: U.S. Department of Education, Institute of Education Sciences, National Center for Education Evaluation and Regional Assistance, Regional Educational Laboratory Midwest. Retrieved from <u>http://ies.ed.gov/ncee/edlabs</u>.
 - 22. Baker, B.D. (2012) Revisiting the Age Old Question: Does Money Matter in Education. Shanker Institute. <u>http://www.shankerinstitute.org/images/doesmoneymatter_final.pdf</u>
- 2011 23. Baker, B.D., Welner, K.G. (2011) Productivity Research, the U.S. Department of Education, and High-Quality Evidence. Boulder, CO: National Education Policy Center. Retrieved [date] from http://nepc.colorado.edu/publication/productivity-research.
 - 24. Baker, B.D. & Ferris, R. (2011). Adding Up the Spending: Fiscal Disparities and Philanthropy among New York City Charter Schools. Boulder, CO: National Education Policy Center. Retrieved [date] from http://nepc.colorado.edu/publication/NYC-charter-disparities.
- Baker, B.D., Farrie, D., Sciarra, D. (2010) Is School Funding Fair? Commissioned by the Education Law Center of New Jersey in collaboration with the Ford Foundation and Educational Testing Service. <u>www.schoolfundingfairness.org</u>
- Baker, B.D. (2009) Private Schooling in the U.S.: Expenditures, Supply and Policy Implications. National Education Policy Center. University of Colorado at Boulder. <u>http://nepc.colorado.edu/files/PB-Baker-PvtFinance.pdf</u>
- 2008 5. Baker, B.D., Taylor, L.L., Vedlitz, A. (2008) Adequacy Estimates and the Implications of Common

Standards for the Cost of Instruction. National Research Council.

J. COMMENTARY/EDITORIALS/REVIEWS

- 2014 1. Baker, B.D. (2014). Review of "Charter Funding: Inequity Expands." Boulder, CO: National Education Policy Center. Retrieved [date] from <u>http://nepc.colorado.edu/thinktank/review-charter-funding-inequity</u>
 - 2. Baker, B.D. (2014) Review of "Should Charter Schools Pay Rent?" Boulder, CO: National Education Policy Center. Retrieved [date] from <u>http://nepc.colorado.edu/files/ttr-charter-rent.pdf</u>
- Baker, B.D. (2013) Review of "Weighted Student Funding for California." Boulder, CO: National Education Policy Center. Retrieved [date] from <u>http://nepc.colorado.edu/thinktank/review-weighted-student-funding-calif/</u>.
- Baker, B.D. (2012). *Review of "New York State Special Education Enrollment Analysis."* Boulder, CO: National Education Policy Center. Retrieved [date] from <u>http://nepc.colorado.edu/thinktank/review-ny-special-ed</u>.
- Baker, B.D. (2011). Review of "Incomplete: How Middle Class Schools Aren't Making the Grade." Boulder, CO: National Education Policy Center. Retrieved [date] fromhttp://nepc.colorado.edu/thinktank/review-middle-class
 - 6. Baker, B.D. (2011) Gifts, Talents and Equal Educational Opportunity. North Carolina Association for Gifted Education.
 - 7. Baker, B.D. (2011) Review of "Spend Smart: Fix Connecticut's Broken School Finance System." Boulder & Tempe. National Education Policy Center.
- 8. Baker, B.D. (2009) All Private Schools are Not Created Equal. *Education Week*
 - 9. Rebell, M.R., Baker, B.D. (2009) Assessing Success in School Finance Litigations. Education Week

10. Baker, B. (2009). *Review of "Weighted Student Formula Yearbook 2009."* Boulder and Tempe: Education and the Public Interest Center & Education Policy Research Unit. http://epicpolicy.org/thinktank/review-Weighted-Student-Formula-Yearbook

- 2008 11. Baker, B.D. (2008) Assessing and Using Educational Data Sources for School and Leadership Research. UCEA Implications Series. www.ucea.org
 - 12. Baker, B.D. (2008) Review of the Fordham Institute Report *Fund the Child: Bringing Equity, Autonomy and Portability to Ohio School Finance.* Education Policy Research Unit. Think Tank Review Project.
- 2007 13. Baker, B.D. (2007) Review of the Buckeye Institute Report Shortchanging Disadvantaged Students: An analysis of intra-district spending patterns in Ohio. Education Policy Research Unit. Think Tank Review Project.
 - 14. Baker, B.D. (2007) Review of The Friedman Foundation Report *School Choice by the Numbers*. Education Policy Research Unit. Think Tank Review Project. <u>http://epsl.asu.edu/epru/ttreviews/EPSL-0705-235-EPRU.pdf</u>
- 2006^{##}
 15. Baker, B.D., Rebell, M. (2006) Robbing Peter to Pay Paul: Weighted Student Funding is not the 100% Solution. *Education Week* 11/29/06

[#] Not including local/regional news outlets

K. MANUSCRIPTS UNDER REVIEW

Journal Articles: Under Review

1. Baker, B.D., Levin, J. (under review) Rethinking "Costing Out" and the Design of State School Finance Systems: Lessons from the Empirical Era in School Finance

L. MANUSCRIPTS IN PREPARATION

Journal Articles

Book Chapters & Policy Reports

1. Baker, B.D. (in progress) How long to the point of no return? Assessing charter school expansion in U.S. cities. Economic Policy Institute

M. MONOGRAPHS & OTHER MANUSCRIPTS

Edited Compilations^{§§}

Baker, B.D. (ed.) State of the States and Provinces. Annual publication of the American Educational Research Association, Special Interest Group on Fiscal Issues

Commissioned Reports & Papers

- Baker, B.D. (2012) The Texas School Finance System Fails to Provide Equal Educational Opportunity to Texas Schoolchildren
- Baker, B.D. (2011) Still Wide of any Reasonable Mark: An evaluation of the Kansas School District Finance act 2011-12. *Schools for Fair Funding*
- Baker, B.D. (2011) Basically Unsound: An Evaluation of New York State's Public School Finance Formula. *New York State Coalition of Small City School Districts.*
- Baker, B.D., Bifulco, R. (2011) Evaluating Connecticut's Education Cost Sharing Program. *Connecticut Coalition* for Justice in Education Funding
- Baker, B.D. (2011) Evaluation of Colorado State School Finance System. Lobato v. State of Colorado
- Baker, B.D. (2010) Evaluation of Illinois State School Finance System. CUL v. State of Illinois
- Baker, B.D. (2010) Evaluation of New York State School Finance System. NY Small City Schools v. State
- Baker, B.D. (2009) Evaluation of New Jersey's School Finance Reform Act. Education Law Center.
- Burzichelli, C., Barnett, W.S. et al. (2008) NJDOE Resource Allocation Study.
- Baker, B.D. (2007) Arizona's State School Finance Formula Fails to Guarantee Equal Educational Opportunity. *Arizona Center for Law in the Public Interest*
- Baker, B.D. (2006) Estimating the Costs of Meeting Educational Outcome Standards in Illinois: A Cost Function Approach. *The Chicago Reporter: Chicago Matters*
- Baker, B.D. (2006) Missouri's State School Finance Formula Fails to Guarantee Equal or Minimally Adequate Educational Opportunity to Missouri Schoolchildren. Prepared for plaintiff districts in *Committee for Educational Equality v. State*

^{§§} Served as editor for professional organization collection of policy briefs

- Baker, B.D., Thomas, S.L. (2006) Review of Hawaii's Weighted Student Formula. Hawaii State Board of Education.
- Baker, B.D. (2005 Fall) Nebraska's State School Finance Policy Fails to Provide Equal Opportunity for Nebraska School Children.
- Baker, B.D. (2005 Fall) Using Econometric Methods to Reconcile School-Level Economies of Scale Adjustments in the Wyoming School Funding Model. Lawrence O. Picus & Associates, North Hollywood, CA.
- Baker, B.D. (2005 Fall) Development of an Hedonic Wage Index for the Wyoming School Funding Model. Lawrence O. Picus & Associates, North Hollywood, CA.
- Baker, B.D. (2005 Fall) Commentary on the Kansas "Cost of Living Adjustment." Prepared on behalf of plaintiff districts in the case of *Montoy v. Kansas.*
- Wood, C.R., Baker, B.D. (2004) Evaluation of Texas School Finance Policy. Prepared for the Attorney General of the State of Texas in the Case of *West Orange Cove v. State*
- Wood, C.R, Baker, B.D. (2004) Evaluation of Missouri School Finance Policy. Report to the Missouri State Legislature.
- Baker, B.D., Taylor, L., Vedlitz, A. (2003) *Measuring Educational Adequacy in Public Schools*. Report to the Texas Select Joint Committee on Education Finance.
- Baker, B.D. (2003) *Evaluation of the Suitability of the Kansas School District Finance Act. Expert Testimony in the Case of Montoy v. Kansas.* Report commissioned by Husch and Eppenberger (Wichita), Somers, Robb and Robb (Newton) and Schools for Fair Funding, Inc.
- Baker, B.D. (2003) Favoring District Needs over Student Needs: The Adverse Effects of the Kansas School District Finance Act on Minority Children and Children with Disabilities. Expert Witness Testimony in the Case of Robinson v. Kansas. Report commissioned by Husch and Eppenberger (Wichita), Somers, Robb and Robb (Newton) and Schools for Fair Funding, Inc.
- Baker, B.D. (2002) Evaluating the Performance of Private Schools Receiving Scholarship Students from the Educational Choice Charitable Trust. Indianapolis, IN.
- Baker, B.D. (2002) *The Allocation of Fiscal and Human Resources in Kansas School Districts*. Prepared under contract for United School Administrators of Kansas. Topeka, KS.
- Baker, B.D. (2001) *Living on the Edges of School Funding Policy: The Plight of At-Risk, Limited English Proficient and Gifted Children.* National Center for Education Statistics, U.S. Department of Education, Washington, DC.

Baker, B.D. (2001) Expert Witness Report. Analysis and Opinions on the Suitability of the School District Finance Act. *Montoy v. State of Kansas*, No. 99-C-1788 (Shawnee County Dist. Ct.)

Invited Reports

Brant, D. (Chair), Baker, B., Ballard, B., Ferguson, L., Jones, D., Vratil, J. (Drafting Team) (2000) Final Report of the Governor's 21st Century Vision Task Force. K-12 Education: Financing for Results. Presented to Governor Bill Graves, December 1, 2000.

Other Reports/Monographs

- Baker, B.D. (1997) A Comparison of Statistical and Neural Network Models for Forecasting Educational Spending. Doctoral Dissertation. Teachers College, Columbia University. Sponsor: Craig E. Richards.
- Baker, B.D. (1995) The Economic Health of Gifted Education in Three Northeastern States: an analysis of public school opportunities and private programs in New York, Connecticut and New Jersey. Unpublished Manuscript. Teachers College, Columbia University (Department of Organization and Leadership). ERIC Clearinghouse on Disabilities and Gifted Education. ED 419 321.

 Baker, B.D. (1995) The Economics of Privatized Management of Public Schools: The Case of Education Alternatives and the Baltimore City Public Schools. Unpublished Manuscript. Teachers College, Columbia University (Department of Organization and Leadership). Data analyses eventually published in "Risky Business: The Private Management of Public Schools." Economic Policy Institute. 1996.

Policy Briefs

- Baker, B.D. (2002) Financing "Adequate" Educational Services in Kansas. Prepared for the Kansas Economic Policy Conference. Policy Research Institute. University of Kansas. www.pri.ku.edu
- Baker, B.D. (2002) Policy Brief on State Funding for Programs for the Gifted and Talented. Prepared for the State Legislative Policy Task Force of the National Association for Gifted Children. James Gallagher, Chair.
- Baker, B.D. (2000) Policy Brief to the Governor's Task Force on Education Finance: School Performance-Based Incentive Funding. Presented to the 21st Century Vision Task Force on Public Education: Financing for Results. State of Kansas. David Brant, Chair.
- Baker, B.D. (2000) Policy Brief to the Governor's Task Force on Education Finance: Estimating and Funding an "Adequate" Education in Kansas. Presented to the 21st Century Vision Task Force on Public Education: Financing for Results. State of Kansas. David Brant, Chair.
- Baker, B.D. (2000) Policy Brief to the Governor's Task Force on Education Finance: At Risk Funding. Presented to the 21st Century Vision Task Force on Public Education: Financing for Results. State of Kansas. David Brant, Chair.
- Baker, B.D. (2000) Policy Brief to the Governor's Task Force on Education Finance: Policy Options for Special Education Funding. Presented to the 21st Century Vision Task Force on Public Education: Financing for Results. State of Kansas. David Brant, Chair.
- Baker, B.D. (1999) Policy proposals for the future of gifted education. *Brief solicited by Council for Exceptional Children (CEC)*. Prepared for Jay McIntire, Policy Specialist for Governmental Relations.
- Baker, B.D. & Richards, C.E. (1998) Equal Opportunity for Gifted Urban Kids: How Vouchers Can Help.
- Baker, B.D. (1997) *Chain Reaction: Bad Research, Bad Policy, Implications for the Gifted.* New York State Association for Gifted and Talented Education (AGATE). ERIC Clearinghouse on Disabilities and Gifted Education.

N. NATIONAL & INTERNATIONAL CONFERENCE PRESENTATIONS

Master Classes

Baker, B.D., Friedman-Nimz, R.C. (2002 – Spring) *Designing and Evaluating State Policies for Meeting the Needs of Gifted Children.* Annual Meeting of <u>The Council for Exceptional Children</u>. New York, NY.

Baker, B.D., Friedman-Nimz, R.C. (2001 – Fall) *Designing and Evaluating State Policies for Meeting the Needs of Gifted Children.* Annual Meeting of <u>The National Association for Gifted Children.</u> Cincinnati, OH.

Symposia***

(2009-Spring) Symposium on Litigation. With Kevin Welner (U. Colo.), Michael Rebell (Teachers College), Bill Koski (Stanford U.), Anne Newman (Wash. U.). American Education Research Association. San Diego, CA.

(2009-Spring) Symposium on the Distribution of Title I Funding. With Kevin Welner, Kevin Carey,

^{***} Entire session proposed by group of authors. Competitive acceptance, but often not blind review.

Marguerite Roza and Goodwin Liu. American Education Research Association. San Diego, CA.

- (2009-Spring) Symposium on Within District Resource Allocation. With Ross Rubenstein and Larry Miller (Syracuse U.), Jesse Levin (AIR)
- (2008-Spring) Presidential Session: Think Tanks and Educational Research. With David Berliner, W. Steven Barnett, Walter Farrell, Alex Molar and Kevin Welner.
- Baker, B.D., Fuller, E., Young, M.D., Punswick, E., Belt, C., Liu, E. (2007-Fall) Understanding Principal Labor Markets. University Council on Educational Administration. Alexandria, VA.
- Baker, B.D., Elmer, D., Slagle, M., Arbuckle, L. (2007-Fall) Racial Isolation and the Costs of Providing Equal Educational Opportunity. University Council on Educational Administration. Alexandria, VA.
- Baker, B.D., Oluwole, J., Ramsey, M. (2007-Fall) Legal, Conceptual and Empirical Foundations of Vertical Equity. University Council on Educational Administration. Alexandria, VA.
- Ed Fuller (U.T. Austin), Bruce Baker (U. of Kansas), Michelle Young (U.T. Austin), Margaret Terry Orr (Bank Street College) (2006-Fall) Examining the Impact of Principals and Principal Preparation Programs. <u>University Council on Educational Administration.</u> San Antonio, TX.
- Margaret Terry Orr (Bank Street College), Bruce D. Baker (U. of Kansas) and others (2006 Spring). *Leadership Preparation and Development*. Annual Meeting of the <u>American Educational Research Association</u>. San Francisco, CA.
- Margaret Terry Orr (Bank Street College), Bruce D. Baker (U. of Kansas) and others (2005 Fall). *Researching the Big Picture of Leadership Preparation Programs*. Annual Meeting of the <u>University Council on</u> <u>Educational Administration</u>. Nashville, TN.
- Verstegen, D.A., Jordan, T., Jordan, K.F., Cooper, B.S., Addonizio, M. (2005 Spring) Adequacy: It's Measurement and Conceptualization. Annual Meeting of <u>The American Education Finance Association</u>. Louisville, KY.
- Picus, L.O., Conley, D., Baker, B., Mathis, W. (2005 Spring) *Conceptions of Educational Adequacy*. Annual Meeting of the <u>American Educational Research Association</u>. Montreal, QE.
- Baker, B.D., Duncombe, W.D., Reschovsky, A., Imazeki, J., Chambers, J.G. (2004 Spring) Striking the Right Balance between District and Student Needs in Cost Adjustments to State Aid: Findings from Research and Implications for Policy. Annual Meeting of <u>The American Education Finance Association</u>. Salt Lake City, UT.
- Baker, B.D.^(c), Driscoll, L., Salman, R., Huff, B., Picus, L.O. (2001 Spring) *Unlocking the Potential of Dynamic Systems Modeling*. Annual Meeting of <u>The American Education Finance Association</u>. Cincinnati, OH.
- Baker, B.D. (2000 Fall) Exploring the Equitable Distribution of Resources for Gifted Children. In Jenkins, R.C., McIntire, J. "Exploring Directions for G/T Policies: Twenty-first Century Implications." Symposium with Mary Ruth Coleman (UNC Chapel Hill), Davis Hendricks (Pulaski County Special School District, AR), Joseph S. Renzulli (University of Connecticut, National Research Center on the Gifted and Talented). Annual Meeting of the National Association for Gifted Children. Atlanta, GA.
- Baker, B.D., Richards, C.E. (2000 Spring) Designed to Fail: Static School Funding Formulas in Dynamic Systems. Interactive Symposium with Allan R. Odden (University of Wisconsin), Lawrence O. Picus (University of Southern California), Scott R. Sweetland (Ohio State University), "Data, Models and Simulations for Research, Practice and Teaching in School Finance." Annual Meeting of the <u>American Education Finance</u> <u>Association</u>. Austin, TX.
- Cooper, B.S., Cilo, M.R., Baker, B.D. (2000-Spring) Applying the Concept of K-16 Education in NYC: Bridging the Methodological Gaps between Schools and Colleges. Symposium with Michael Kirst (Stanford University), Margaret Terry Orr (Teachers College), Sheri Ranis (Social Science Research Council), Deborah Sullivan (American Institutes for Research), Debra Bragg (University of Illinois), Donna Dare (University of

Illinois), David Brennaman (University of Virginia), Richard Hasselbach (CUNY), "Beyond High School: Negotiating the School-to-College Transition into the 21st Century." Annual Meeting of the <u>American</u> <u>Educational Research Association</u>, Division J. New Orleans, LA.

Paper Sessions

- Baker, B.D. (2012 Spring) Exploring the depth, breadth and drift of curricular offerings across school districts facing varied resource constraints. Association for Education Finance and Policy. Boston, MA. http://aefpweb.org/sites/default/files/webform/Baker.AEFP_.NY_IL.Unpacking.Jan_2012.pdf
- Levin, J., Chambers, J., Blankenship, C., Taylor, L., Baker, B. (2012 Spring) Towards a More Accurate Measure of Student Poverty: An Alternative Method for Calculating Cost-Adjusted Poverty. Association for Education Finance and Policy. Boston, MA.
- Baker, B.D. (2011-Spring) Cheerleading, Ceramics and Inefficiency in High Poverty Schools: Are low performing school districts simply squandering resources on "non-essential" services? American Education Research Association. New Orleans
- Baker, B.D., Peevely, G., Harrison, R. (2010-Spring) Competitive Wages and the Distribution of Teachers Across Demographically Diverse Micropolitan Schools. American Education Research Association.
- Fuller, E., Young, M., Baker, B. (2009 Spring) School Leadership, Entrance, Attrition and Migration. American Education Research Association. San Diego, CA.
- Clifford, M., Brown, C., Baker, B. (2009 Spring) The Relationship between Principals Attributes, School Level Teacher Quality and Turnover. American Education Research Association. San Diego, CA.
- Peevely, G., Baker, B., Smith. S. (2009-Spring) Education and the Black Belt: The Need for Additional Capacity. American Education Research Association. San Diego, CA.
- Baker, B.D., Ramsey, M. (2009-Spring) Census based funding in special education: Can it really provide equity for children with disabilities? American Education Research Association. San Diego, CA.
- Baker, B. (2008-Spring) Wage Adjustments in State School Finance Policy: Doing more harm or good? American Educational Research Association. NY, NY.
- Killeen, K, Baker, B. (2008-Spring) Addressing the moving target: Should measures of student mobility be included in education cost studies. American Educational Research Association. NY, NY.
- Slagle, M., Yan, B., Baker, B.D. (2008-Spring) A Geographically Weighted Regression Approach for Explaining Spatial Variation Among School Districts in Education Demand. American Educational Research Association. NY, NY.
- Fuller, E., Baker, B.D., Young, M.D. (2008-Spring) Examining the effect of school leaders and their preparation on teacher quality and student achievement. American Educational Research Association. NY, NY.
- Baker, B. (2008-Spring) Within district budgeting policy and the allocation of resources across schools: What do we really know? American Education Finance Association, Denver, CO.
- Slagle, M., Yan, B., Baker, B.D. (2008-Spring) A Geographically Weighted Regression Approach for Explaining Spatial Variation Among School Districts in Education Demand. American Education Finance Association, Denver, CO.
- Punswick, E., Baker, B. (2008-Spring) Principal Backgrounds and School Leadership Stability: Evidence from Flyover Country. American Education Finance Association, Denver, CO.
- Baker, B. (2007-Spring) The Politics of Teacher Wage Adjustments in State School Finance Policies. American Education Finance Association. Baltimore, MD.
- Killeen, K, Baker, B. (2007-Spring) On the move: Evaluating the impact of measures of student population transiency on district level costs of improving educational outcomes. American Education Finance Association. Baltimore, MD.

- Fuller, E., Young, M.D., Baker, B.D. (2007-Spring) Career Paths and the Influence of School Principals on Teachers. <u>American Educational Research Association</u> Chicago, IL
- Baker, B.D. (2007-Spring) Black-White Funding Disparities in America's Major Metropolitan Areas: Implications for Teacher Labor Markets. <u>American Educational Research Association</u> Chicago, IL
- Baker, B.D., Green, P.C. (2007-Spring) Evaluating the Effect of Racial Isolation on the Cost of Educational Outcomes in Two Midwestern States. <u>American Educational Research Association</u> Chicago, IL
- Baker, B.D., Thomas, S.L. (2007-Spring) Toward what end? Comparing the costs of producing adequate test scores with the costs of improving college matriculation. <u>American Educational Research Association</u> Chicago, IL
- Baker, B.D., Green, P.C. (2006-Fall) Black-White Funding Disparities in America's Major Metropolitan Areas. <u>University Council on Educational Administration.</u> San Antonio, TX.
- Ng, J.C., Baker, B.D. (2006-Spring) Big Changes in Small Town America: A macro level analysis of micropolitan schooling. Annual Meeting of the <u>American Educational Research Association</u>. San Francisco, CA.
- Slagle, M., Baker, B.D. (2006 Spring) Application of Local Indicators of Spatial Association Modeling to Missouri Teacher Wages. Annual Meeting of the <u>American Education Finance Association</u>.
- Baker, B.D., Green, P.C. Goin' to Kansas City: A critical empirical analysis of the *Urban Legends* of the aftermath of *Missouri v. Jenkins*. (2005 Fall) Annual Meeting of the <u>University Council on Educational Administration</u>. Nashville, TN.
- Morphew, C.C., Baker, B.D. (2005 Spring) Sibling Rivals: Conceptualizing the Relationship between K-12 and Postsecondary Finance at the State Level. Annual Meeting of the <u>American Educational Research</u> <u>Association</u>. Montreal, QE.
- Baker, B.D., Green, P.C. (2005 Spring) The Re-Measurement of Equity (and Adequacy) in School Finance. Annual Meeting of the <u>American Educational Research Association</u>. Montreal, QE.
- Morphew, C.C., Baker, B.D. (2005 Spring) Sibling Rivals: Conceptualizing the Relationship between K-12 and Postsecondary Finance at the State Level. Annual Meeting of the <u>American Education Finance</u> <u>Association.</u> Louisville, KY.
- Baker, B.D., Green, P.C. (2005 Spring) The Re-Measurement of Equity (and Adequacy) in School Finance. Annual Meeting of the <u>American Education Finance Association</u>. Louisville, KY.Baker,
- B.D., Green, P.C. (2004 Fall) Race as a "Plus Factor" in School Finance Policy. Annual Meeting of the <u>American Education Finance Association.</u> Louisville, KY.
- Baker, B.D., Green, P.C. (2004 Fall) Race as a "Plus Factor" in School Finance Policy. Annual Meeting of the <u>University Council on Educational Administration</u>. Kansas City, MO.
- Baker, B.D., Wolf-Wendel, Lisa E. (2004 Fall) Exploring the Faculty Pipeline in Educational Administration: Evidence from the Survey of Earned Doctorates 1990 to 2000. Annual Meeting of the <u>University Council</u> <u>on Educational Administration</u>. Kansas City, MO.
- Baker, B.D., Keller, H. (2004 Spring) A Systematic Approach to Computer Simulation Development in School Finance: Application to the State of Texas. Annual Meeting of <u>The American Education Finance</u> <u>Association</u>. Salt Lake City, UT.
- Wolf-Wendel, L.E., Baker, B.D., Twombly, S., Mahlios, M. (2004 Spring) Who's Teaching the Teachers? An empirical analysis of predictors of doctoral degree attainment and faculty placement in teacher education. Annual Meeting of the <u>American Educational Research Association</u>. San Diego, CA.
- Baker, B.D., Markham, P. (2004 Winter) A Comprehensive Legal and Empirical Framework for Evaluating State Financial Aid for the Provision of Services to English Language Learners. Annual Meeting of the <u>National Association for Bilingual Education (NABE).</u> Albuquerque, NM.

- Baker, B.D., Green, P.C., Fusarelli, L. (2003 Fall) Tricks of the Trade: Legislative Actions in School Finance that Disadvantage Minorities in the Post-Brown Era. Annual Meeting of the <u>University Council on</u> <u>Educational Administration</u>. Portland, OR.
- Baker, B.D. (2003 Fall) Principals' Academic Preparation and Experience and the Distribution of Quality Teachers? Evidence from the Schools and Staffing. Annual Meeting of the <u>University Council on</u> <u>Educational Administration</u>. Portland, OR.
- Baker, B.D. (2003 Spring) *The Collapse of the Kansas School District Finance Act.* Symposium on the Sate of the States and Provinces. Annual Meeting of <u>The American Educational Research Association</u>. Chicago, ILL.
- Morphew, C & Baker, B.D. (2003 Spring) *Measuring the Costs to Baccalaureate Degree Attainment: A Resource Cost Model Approach.* Annual Meeting of The Association for Institutional Research. Tampa, FL.
- Baker, B.D. & Morphew, C (2003 Spring) *Measuring the Costs to Baccalaureate Degree Attainment: A Resource Cost Model Approach.* Annual Meeting of <u>The American Education Finance Association.</u> Orlando, FL.
- Green, P.C. & Baker, B.D. (2002 Spring) *Circumventing Rodriguez: Alternatives for Seeking Federal Solutions to State School Finance Inequities.* Annual Meeting of <u>The American Educational Research Association</u>. New Orleans, LA.
- Baker, B.D. (2002 Spring) Living on the Edges of School Funding Policy: The Plight of At-Risk, Limited English Proficient and Gifted Children. Annual Meeting of <u>The American Educational Research Association</u>. New Orleans, LA.
- Baker, B.D. (2002 Spring) Estimating the Adequacy and Effects of State Aid Allocations for Gifted, Limited English Proficient and At Risk Students. Annual Meeting of <u>The American Education Finance Association</u>. Albuquerque, NM.
- Baker, B.D. (2002 Spring) Determinants of Within and Between State Differences in the Internal Allocation of District Resources: Evidence from the Common Core of Data. Annual Meeting of <u>The American Education</u> <u>Finance Association</u>. Albuquerque, NM.
- Baker, B.D., Richards, C.E. (2001 Spring) *Unlocking the Potential of Dynamic Systems Modeling in School Finance*. Proposal for a Demonstration/Consultation Session. SIG - Fiscal Issues. Annual Meeting of <u>The American</u> <u>Educational Research Association</u>. Seattle, WA.
- Morphew, C.C., Baker, B.D. (2001 Spring) *The Administrative Lattice and the New Research I Universities*. Division J – Higher Education. Division J. Annual Meeting of <u>The American Educational Research</u> <u>Association</u>. Seattle, WA.
- Baker, B.D., Friedman-Nimz (2001 Spring) *State Policy Influences Governing Equal Opportunity: The Example of Gifted Education.* <u>American Education Finance Association</u> Annual Meeting. Cincinnati, OH.
- Baker, B.D., Green, P.C. (2001 Spring) Challenging School Finance Policy as Civil Rights Violation: The Application of Title VI to School Finance in Kansas. <u>American Education Finance Association</u> Annual Meeting. Cincinnati, OH.
- Baker, B.D. (2000-Spring) *Challenging Opportunities in Fiscally Challenged Schools?* Annual Meeting of the <u>American Education Finance Association.</u> Austin, TX.
- Baker, B.D. (1999-Spring) *Searching for a "Rational Educational Explanation" for Spending Differences in Kansas Schools.* Annual Meeting of the <u>American Education Finance Association</u>. Seattle, WA.
- Baker, B.D. (1999-Spring) A Comparison of Linear and Non-linear Models for Testing the Sensitivity of Cost to Different Performance Expectations. Annual Meeting of the <u>American Education Finance Association</u>. Seattle, WA.
- Baker, B.D. (1999-Spring) *Effort, Burden, What do They Really Mean? Testing the Fairness of Formula Alternatives for Vermont.* Annual Meeting of the <u>American Education Finance Association</u>. Seattle, WA.
- Baker, B.D. (1999-Spring) Predicting the Cost of High Performance: A Sensitivity Simulation Using GMDH Neural

Page 20 of 30

Networks. Annual Meeting of the <u>American Educational Research Association</u>. Division L. Montreal, Quebec.

- Baker, B. D., Keller-Wolf, C., Wolf-Wendel, L. (1999-Spring) Dispelling Myths through Disaggregation: The relationship between race/ethnicity and student achievement. Annual Meeting of the <u>American Educational</u> <u>Research Association</u>. Montreal, Quebec.
- Baker, B.D. (1998-Fall) *Systems Thinking Applied: Moving Beyond Conversation with ITHINK*. Annual Meeting of the <u>University Council on Educational Administration</u>. St. Louis, MO.
- Baker, B.D. (1998-Fall) Enhancing our Understanding of the Complexities of Education: "Knowledge Extraction from Data" Using Neural Networks. Annual Meeting of the <u>University Council on Educational Administration</u>. St. Louis, MO.
- Wolf-Wendel, L., Baker, B.D., Morphew, C. (1998-Fall) Dollars & \$ense: Resources and the Baccalaureate Origins of Women Doctorates. Annual Meeting of the <u>Association for the Study of Higher Education</u>. Miami, Florida.
- Baker, B.D. (1998-Spring) A Comparison of Linear and Flexible Non-Linear Regression Methods for Forecasting Educational Spending. Annual Meeting of the <u>American Education Finance Association</u>. Mobile, Al.
- Baker, B.D. (1998-Spring) An Inductive Approach to Production-Function Modeling: A Comparison of Group Method of Data Handling (GMDH) and Other Neural Network Methods. Annual Meeting of the <u>American Education</u> <u>Finance Association</u>. Mobile, Al.
- Baker, B.D., Richards, C.E. (1997-Spring) *Equity Through Vouchers: The Special Case of Gifted Education*. Annual Meeting of the <u>American Education Finance Association</u>. Jacksonville, FL.
- Richards, C.E., Baker, B.D., Cilo, M. (1996-Spring) *Is Privatization More Efficient? The Case of Education Alternatives inc. in Baltimore.* Annual Meeting of the <u>American Educational Research Association</u>. New York, NY.
- Roundtables
 - Wolf-Wendel, L.E., Twombly, S., Baker, B.D. (2006 Spring) Pathways to the Professoriate in Educational Administration: Are they different for men and women? Annual Meeting of the <u>American Educational</u> <u>Research Association</u>. San Francisco, CA.
 - Baker, B.D., Lacireno-Paquet, N. (2005 Fall) Do the Smarter Kids get the Smarter Teachers? Evidence from the Schools and Staffing Survey on Teacher Sorting and Selective Magnet and Charter Schools. Annual Meeting of the <u>University Council on Educational Administration</u>. Nashville, TN.
 - Baker, B.D., Cooper, B.S. (2004 Spring) Do Principals with Stronger Academic Backgrounds Hire Better Teachers? Policy Implications for High Poverty Schools. Annual Meeting of the <u>American Educational</u> <u>Research Association</u>. San Diego, CA.
 - Baker, B.D., Dickerson, J. (2004 Spring) Charter Schools and State Policies Regarding Teacher Certification: Using flexibility for "good" or "evil?" Annual Meeting of the <u>American Educational Research</u> <u>Association</u>. San Diego, CA.
 - Baker, B.D. (2001 Spring) *The State of School Finance in Kansas: State of the States Roundtable Series.* Annual Meeting of <u>The American Educational Research Association.</u> SIG Fiscal Issues. Seattle, WA.
 - Reis, S.B., Baker, B.D., Pewewardy, C., Tippeconnic, J. (1999-Spring) The Federal Government's Responsibility for Indian Education in an Era of Self-Determination. Annual Meeting of the <u>American Educational Research</u> <u>Association</u>. SIG - Indian Education. Montreal, Quebec.
 - Baker, B.D. (1998-Spring) Production-Function What's Your Function? A closer look at how the complexities of educational productivity evade traditional analytical techniques, and some new solutions. Annual Meeting of the American Educational Research Association. San Diego, CA.

Baker, B.D., Richards, C.E. (1998-Spring) Exploratory Application of Neural Networks to School Finance: Forecasting Educational Spending. Annual Meeting of the <u>American Educational Research Association</u>. San Diego, CA.

O. OTHER PROFESSIONAL PRESENTATIONS

Guest Lectures

- 2002 (Fall) 2002 Kansas Economic Policy Conference: At the Crossroads: Can Kansas Afford its Future? Policy Research Institute of the University of Kansas, Lawrence.
- 2002 (Fall) State Policies, Educational Efficiency and the Internal Allocation of School District Resources. Southwest Educational Development Laboratory (SEDL) Annual Policy Conference. Little Rock, AR.
- 2002 (Summer) Simulation Modeling in School Finance. Fordham University Summer Institute on School Finance. Coordinator, Bruce S. Cooper.
- 2002 (Spring) Alternatives for Funding Special Education in Kansas. Kansas Special Education Advisory Committee. Topeka, KS.
- 2001 (Fall): School Finance in Kansas. School of Education Research Roundtable. University of Kansas.
- 2000 (Summer) Evaluation & Critique of Kansas School Finance Policy. To the Governor's Task Force on "K 12 Education: Financing for Results."
- 1998 (Fall): School Finance Equity in Kansas. School of Education Symposium. University of Kansas.
- 1998 (Spring): State of the States Roundtable. Annual Meeting of the <u>American Education Finance</u> <u>Association</u>. Mobile, Al. *Invited*
- 1998 (Spring): Equity and Adequacy in Education. Invited presentation to graduate seminar on Economics and Education. University of Kansas (Coordinator: Barbara Phipps) *Invited*
- 1997 (Summer): A Comparison of Statistical and Neural Network Models for Forecasting Educational Spending. Research Seminar: The RAND Corporation.
- 1996 (Spring): Technology in the Science Classroom: Using Computers to Develop Analytical Reasoning Skills. NJ Association for Gifted Children Annual Conference (Princeton, NJ)
- 1995 (Summer): Report on the Economic Health of Gifted Education in the Northeast. An invited roundtable presentation to the elected chairs of the state associations of New Jersey, Connecticut, New York and Massachusetts.
- 1995 (Spring): Integrating technology into science through projects involving data collection and analysis. College Gifted Day (Montclair State University, NJ)
- 1994 (Spring) Overview of School Finance Policy in the United States. Korean Ministry of Education. An invited presentation at Teachers College, Columbia University.
- 1989 (Spring) Developing Scientific Research Projects with Gifted High School Students. Connecticut State Update Conference on Gifted Education. Southern Connecticut State University (New Haven, CT)

P. SERVICE PRESENTATIONS

Special Education Finance Policy. Invited Lecture, University of Kansas. Coordinator - Jeannie Trammel. Spring, 2003.

Financing an Adequate Education in Kansas. Lawrence Business Education Partnership. January, 2003. Financing an Adequate Education in Kansas. Lawrence – Douglas County League of Women Voters. November, 2002.

- Evaluation of Augenblick & Myers Study on "The Cost of a Suitable Education in Kansas." Presented to the Governors Task Force. August 23, 2002.
- Education Finance in Kansas. Invited presentation, University of Kansas Media Tour. Lawrence, KS. Fall, 2001.
- Understanding Gifted Education Policy. Invited presentation, Gifted Education Advocacy Conference. Overland Park, KS. Summer, 2001.
- Special Education Finance Policy. Invited Lecture, University of Kansas. Coordinator Jeannie Trammel. Spring, 2000.
- Special Education Finance Policy. Invited Lecture, University of Kansas. Coordinator Jeannie Trammel. Spring, 1999.
- Overview of Education Finance Policy. Invited Lecture, University of Kansas. Coordinator Barbara Phipps. Spring, 1998.

Q. OTHER GRANTS

External: Not Awarded

- Baker, B.D., (PI) The Influence of Resource Progressiveness on Achievement Gaps within Major Metropolitan Areas and Large Urban School Districts. Funding Source – Institute for Education Sciences, U.S. Dept. of Education (\$89,907 for one year, commencing Summer 2007)
- Baker, B.D., (PI) The Influence of Resource Progressiveness on Teacher Labor Markets within Major Metropolitan Areas and Large Urban School Districts. Funding Source – Institute for Education Sciences, U.S. Dept. of Education (\$143,303 for two years, commencing Summer 2007)
- Baker, B.D. (Subcontractor) Career Paths and Influence of School Administrators. PI Michelle D. Young, University of Texas at Austin. Funding Source – Institute for Education Sciences, U.S. Dept. of Education (Subcontract = \$40,045 for two years, commencing Summer 2007)

External: Awarded Small Grants

- Baker, Bruce D. (PI) *Exploring the Rationality of State Aid for Fringe Populations: Evidence from the Common Core of Data.* 2001 NCES/AEFA New Scholars Program. (\$5,000)
- Baker, Bruce D.; Hatley, Richard.; Arney, Lynn. (Spring 1998) *Technology for Effective Educational Leadership*. Regional Consortia Grants. University Council on Educational Administration. (\$1,000)

Internal: Awarded

- Baker, B.D. (2003 Summer) Understanding the Nexus Between State Policies, Education Governance and Teacher Labor Markets. University of Kansas Policy Research Institute (Research Fellow).
- Friedman-Nimz, R.C., Baker, B.D. (2001 Summer) Estimating the Resource Costs of Opportunities for Gifted Children. Graduate Research Fund. (\$10,000)
- Baker, B.D., Friedman, R.C. (2000 Summer) Assessing Resource Equity: Social Status and the Availability of Opportunities for Gifted Children. Graduate Research Fund (Award: \$11,979)
- Baker, Bruce D., Pewewardy, Cornel. (Spring 1998) *Financing Indian Education in an Era of Self Determination*. New Faculty General Research Fund Grants, University of Kansas Center for Research. (\$5,000)

R. OTHER CONSULTANCIES & CONTRACTED RESEARCH

- 2012: NEPC Evaluating expenditures of charter schools in New York City, Texas and Ohio
- 2010: NEPC Evaluating expenditures of New York City charter schools
- 2008: EPIC/Great Lakes Center Evaluating expenditures of private schools
- 2008: National Research Council. National Academy of Sciences. Evaluation of methods for costing out common education standards. With Lori L. Taylor and Arnold Vedlitz.
- 2006 Present: CG & SB v. Commonwealth of Pennsylvania
- 2007: Arizona Center for Law in the Public Interest
- 2006: NY State Office of the Attorney General
- 2004: Education Week Quality Counts 2005. Consultant on feature article on Educational Adequacy (\$2.5k)
- 2004: Expert witness for the State of Texas, Attorney General. *West Orange Cove Consolidated Independent School District et al. v. Nelson, et al.* (\$12k subcontract)
- 2004 Present: Expert witness for plaintiff districts in *Committee for Educational Equality, et al. v. State.* Husch & Eppenberger, Jefferson City.
- 2004 Present: Expert witness for plaintiff districts in *Douglas County School District v. Heineman.* Baird, Holm, McEachen, Pedersen, Hamann & Strasheim, LLP, Omaha.
- 2002 (Spring Summer) Project consultant to Southwest Educational Development Laboratory (SEDL). Zena Rudo, Project Coordinator. (\$1.5k)
- 2002 (Spring Summer) Evaluation of Student Gains in CHOICE Schools in Indianapolis. Educational Choice Charitable Trust. Tim Ehrgott, Project Coordinator. (\$9k)
- 2001 2002 (Winter) Analysis of the Allocation of Fiscal and Human Resources in Kansas School Districts. United School Administrators of Kansas. Brilla Highfill-Scott, Project Coordinator. (\$2k)
- 2001 (Summer). Analysis of State Funding Programs for Limited English Proficient Students. Project Director: Paul Markham, University of Kansas.
- 2001 (Winter Present). Expert Witness for plaintiffs in case of *Robinson v. State of Kansas* (U.S. Dist. Ct. Case No. 99-1193-MLB). The federal case charges that the current Kansas school funding formula (a) violates the enactment provisions of Title VI of the Civil Rights Act of 1964 by creating disparate impact by race, ethnicity or national origin (b) violates the Americans with Disabilities Act by creating disparate impact on students with disabilities and (c) violates equal protection. Attorneys for the plaintiffs: John Robb of Somers, Robb & Robb, Newton, KS and Alan Rupe of Husch & Eppenberger, LLC, Wichita, KS.
- 2001 (Winter Present). Expert Witness for plaintiffs in case of *Montoy v. State of Kansas* (No. 99-C-1788 (Shawnee County Dist.Ct.). The state case charges that the current Kansas school funding formula does not meet the state's constitutional requirement of providing for a "suitable" system of public education. Attorneys for the plaintiffs: John Robb of Somers, Robb & Robb, Newton, KS and Alan Rupe of Husch & Eppenberger, LLC, Wichita, KS.
- 1999 (Winter). Statistical Consultant, Mayor's Advisory Task Force on the City University of New York. Provided support on statistical analysis of predictors of remedial needs for students moving from NYC k-12 public schools to the City University system for *Bridging the Gap Between School and College: A Report on Remediation in New York City Education*. Commission Chair: Benno Schmidt. Research Project Coordinator: Miriam Cilo. Collaborating Researcher: Bruce S. Cooper, Fordham University.
- 1999 (Winter). Policy Consultant, Council for Exceptional Children. Prepared policy briefs for Council for Exceptional Children in support of federal legislation for gifted education. Briefs requested by Jay

McIntire, Policy Specialist for Governmental Relations, Department of Public Policy, CEC.

- 1996 1997. Research Assistant, Department of Organization and Leadership. Teachers College of Columbia University. NY, NY. Assistant to Dr. Craig E. Richards on *Developing Multidimensional Computer Simulations for Strategic Planning in Education* supported by an internal grant from Teachers College for curriculum development.
- 1994 1995. Research Assistant, Department of Educational Administration (Teachers College) & Economic Policy Institute. Assistant to Dr. Craig E. Richards on a grant from the Economic Policy Institute. Analyzed contractual issues and finances of Education Alternatives Inc. in Baltimore for a book titled Risky Business: Private Management of Public Schools.

S. EXPERT WITNESS TESTIMONY BY CASE

2010 – Present: CCJEF v. State of Connecticut
Reports Submitted - 2011 & 2013
Trial Testimony - February 2016
2009 - Present: Maisto v. New York
Trial Testimony - March 2015
Reports Submitted - 2011 & 2013
2012- ????: Texas Taxpayer & Student Fairness Coalition v. Scott
Position: The Texas school finance system fails to provide equal educational opportunity to Texas schoolchildren
Report Submitted – August, 2012
Deposition Taken – October, 2012
Trial Testimony – November, 2012
2012 – 2012: Chester Upland School District v. Commonwealth of Pennsylvania
Position: The Pennsylvania special education finance formula and charter school funding formula arbitrarily and capriciously disadvantage CUSD
Report Submitted - May 2012
Trial Testimony – May 2012
Eastern District Court of Pennsylvania (Federal)
2011 – ????: Gannon v. Kansas
Position: Plaintiffs against state on question of whether finance formula complies with judicial order in Montoy v. Kansas
Report Submitted – November, 2011
Deposition Taken – December, 2011
Trial Testimony – June, 2012
Shawnee County District Court (Kansas)
2010 – 2011: Lobato v. State of Colorado
Position: Plaintiffs against state on question of whether Colorado school finance formula complies with equity and adequacy provisions of state constitution.
Report Submitted – March 17, 2011
Deposition Taken – June 22, 2011

Trial Testimony - August 5, 2011

Contact, Kathleen Gebhardt, kgebhardt@childrens-voices.org

2009 - Present: Chicago Urban League v. Illinois State Board of Education

2009: Abbott v. Burke

Position: Plaintiffs against state on question of whether process used to derive School Finance Reform Act establishes sufficient link between mandated outcomes and resources needed for children attending high poverty urban districts.

Report Submitted - Jan 21, 2009

Deposition Taken - Jan 30, 2009

Trial Testimony - Feb 20, 2009

Contact: David Sciarra, Education Law Center, Newark, NJ.

2008 - Present: C.G. vs. Commonwealth of Pennsylvania

Position: Plaintiffs against state on question of inequities arising from census based financing of special education

Report Submitted - Dec 1, 2008

Contact: Evalynn Welling, Community Justice Project. Pittsburgh, PA.

Middle District Court of Pennsylvania (Federal)

2007 – 2008: Espinoza v. State of Arizona

Position: Plaintiffs against state on question of whether Arizona school funding formula provides equal educational opportunity for poor and non-English speaking children

Report Submitted - Fall 2007

Deposition Taken - Fall 2007

Trial Testimony - Summer 2008

Contact: Tim Hogan, Arizona Center for Law in the Public Interest. Phoenix, AZ.

2004 – 2007: Committee for Educational Equality, et al. v. State of Missouri [04CV 323022]

Position: Plaintiffs against state on question of whether Missouri school funding formula provides equal educational opportunity for poor and minority children

Report Submitted - Fall 2006

Deposition Taken - Fall 2006

Trial Testimony - Winter 2007

Contact: Alex Bartlett, Husch-Blackwell-Sanders. Jefferson City, MO.

2004 – Present: Douglas County School District v. Heineman (Nebraska)

Position: Plaintiffs against state on question of whether Nebraska school funding formula provides equal educational opportunity for poor and minority children

First Report Submitted - Fall 2005

Supplemental Report Submitted - Fall 2007

Deposition Taken - Winter 2008

Contact: Jill Robb Ackerman, Baird Holm Law Firm. Omaha, NE.

2003 - 2006: Montoy v. Kansas. No. 92,032

Position: Plaintiffs against state on question of whether Kansas school funding formula provides equal educational opportunity or educational adequacy for poor and minority children

First Report Submitted - Spring 2003

Additional Reports Submitted - Through 2006 Deposition Taken - Spring/Summer 2003 Trial Testimony - Fall 2003 Contact: Alan Rupe, Kutak Rock. Wichita, KS. 2003 – 2005: *Robinson v. Kansas.* 295 F.3d 1183 First Report Submitted - Winter 2003 Deposition Taken - Spring/Summer 2003 Contact: Alan Rupe, Kutak Rock. Wichita, KS.

T. PROFESSIONAL ORGANIZATIONS & SERVICE

National

- 2009 Present: NEA Task Force on Indicators
- 2007 Present: UCEA Task Force on Leadership Preparation.
- 2005 Fall: Nominating Committee for candidates for the Executive Committee of University Council on Educational Administration.
- 2005 Spring: AERA Division A Dissertation Award Committee
- 2003 2004: Program Chair AERA Special Interest Group: Fiscal Issues and Policy
- 2002 2003: Member State Policy Task Force, National Association for Gifted Children
- 2002 2003: Chair AERA Special Interest Group: Charter Schools Research and Evaluation
- 2000 2002: Secretary/Treasurer AERA Special Interest Group: Charter Schools Research and Evaluation.
- 2000 Present: Webmaster AERA Special Interest Group: Charter Schools Research and Evaluation.

www.csre.org

- 1997 Present: Plenum Representative, University Council on Educational Administration
- 1996 Present: Member, American Educational Research Association (Divisions A & L)
- 1996 Present: Member, American Educational Finance Association

Regional

1998: Coordinator: Technology for Effective Educational Leadership. Regional UCEA Seminar on the uses of Computer Technology for 1) Information Management 2) Content Delivery and 3) Decision Making Analysis. (Postponed)

State

2002: Governor's (Bill Graves) Vision 21st Century Task Force. Member of the subcommittee on *K*-12 *Education: Financing for Results.* Task Force Chair: Lieutenant Governor Gary Sherrer.

2000: Governor's (Bill Graves) Vision 21st Century Task Force. Member of the subcommittee on *K*-12 *Education: Financing for Results.* Task Force Chair: Lieutenant Governor Gary Sherrer.

University

2003 - 2008: Executive Committee, Graduate Council

2000 - 2008: Graduate Council

2001 (Spring) - Reviewer for Graduate Teaching Assistant awards

School

2004 - Present: Personnel Committee

Department

1998 - 2000: Personnel Committee

1998 - Present: Faculty Representative to KAW Valley Purchasing Coop.

- 1997 1999: Member, T&L Operations Committee
- 1997 1998: Ad-Hoc Planning Team, Instructional Leadership Program

U. EDITORIAL RESPONSIBILITIES

Editorial Boards

 Journal of Education Finance. Editor: James Gordon Ward. Association of School Business Officials International
 Journal of Education Finance and Policy. Editors: David Monk & David Figlio. MIT Press.
 2001 – 2003 Leadership and Policy in Schools

Journal Reviewer

Teachers College Record Leadership and Policy in Schools Journal of Education Finance Education Finance & Policy Education Policy Analysis Archives Educational Evaluation and Policy Analysis Economics of Education Review Educational Administration Quarterly Journal of Statistics Education (2003)

Grant Reviewer

William T. Grant Foundation (2009)

Policy Review Panels^{†††}

National External Policy Review Panel (Kevin Welner, Coordinator) Texas School Finance Project 2005 School Finance Redesign Project (<u>http://www.schoolfinanceredesign.org/</u>)

V. TEACHING AND ADVISING

Doctoral Dissertations as Chair

University of Kansas

Brian Huff (2002) Systems modeling for integrated fiscal planning in education
Michael Sullivan (2004) The allocation of resources in Catholic schools
Pamela Best (2005) Benefit-cost analysis of the Kansas Computerized Assessment (KCA): Implications for equity and cost-effectiveness in the allocation and use of educational resources
Paul Wooten (2006) The impact of business and industry tax appeals on education funding in Missouri
Michele Norman (2006) How much leave do school employees utilize? An analysis of sick leave policies and their relationship to the amount of leave used by school employees in Missouri public schools
Carolyn Carlson (2007) An examination of secondary reading specialists: Demographic, training, and employment characteristics

^{##} Involve academic review of policy proposals and related policy research

- Mike Slagle (2007) A geographically weighted regression approach for explaining spatial variation among school districts in a median voter model of education demand
- Eric Punswick (2008) Elementary principals' backgrounds, stability, moves, and departures: Evidence from Iowa, Minnesota, Missouri, and Wisconsin

University of Kansas (while at Rutgers)

- Charles Belt (2010) Factors affecting principal turnover: A study of three Midwestern cities (co-chaired with Mickey Imber)
- Craig Correll (2010) Principal participation in induction programs: Evidence from the Schools and Staffing Survey
- Gretchen Anderson (2010) The effect of participation in teacher induction and mentor programs and the assignment of mentor teacher on the satisfaction and retention of new teachers (co-chaired with Marc Mahlios)

Rutgers University

Rich, A. (2014) The Intervention and Referral Process: Purpose, Uses, and Implications Palmieri, J. R. (2014). 21st century girls' schools: for what reasons are new independent girls' schools opening in the United States? (Doctoral dissertation, Rutgers University-Graduate School of Education).

Gristina, M. (2014). A descriptive analysis of the principalship in New Jersey, 1996-2011 (Doctoral dissertation, Rutgers University-Graduate School of Education).

Kolu, M. K. (2014). A longitudinal analysis of New Jersey school superintendents, their professional profiles and career paths (Doctoral dissertation, Rutgers University-Graduate School of Education).

Kirk, K. L. (2013). Personnel allocation in middle schools in the state of New Jersey: an examination of school context, accountability pressure, and teacher assignments (Doctoral dissertation, Rutgers University-Graduate School of Education).

Casarico, P. (2013). Factors affecting the distribution and access to athletic opportunities for New Jersey high school students (Doctoral dissertation, Rutgers University-Graduate School of Education).

Zengel, S. (2010). An analysis of athletic expenditures in New Jersey schools (Doctoral dissertation, Rutgers, The State University of New Jersey).

Doctoral Dissertations as Committee Member

- Yuan Hong (2010) A comparison among major value-added models: A general model approach
- Brian Smith (2005) An investigation of the use of canine searches in Kansas high schools
- Darrell Stufflebeam (2005) Suspicionless drug testing of students in Kansas public schools
- Jean McCally (2004) Educational administration doctoral recipients in the state of Kansas and their pursuit of the superintendency: A study of gender differences
- Helen Jenkins (2003) A study of risk management practices in K--12 Kansas school districts
- Frank Jones (2003) Endowed teaching chairs at independent schools: Two case studies
- Scott Strawn (2003) Herding cats with carrots and sticks: Performance funding, governance structures and faculty productivity
- Christine Keller-Wolf (2003) Moving forward or standing still? Progress in achieving wage equity for women faculty in the 1990s
- Jill Smith (2003) Reference checking and reference giving practices of Kansas school districts: A legal analysis

Todd Covault (2001) Early retirement incentive programs in Kansas school districts: Issues of compliance with state and federal law

Glenn Walker (2000) The effect of block scheduling on mathematics achievement in high and low SES secondary schools

ATTACHMENT B

_/ _/ Statistics/Data Analysis User: Bruce Baker Project: CTU 1 . ****Import Performance High Schools**** name: <unnamed> log: E:\Current Work\Cla-Chicago Litigation\CPS\bbaker_cps_schoolacctblty_2.10.17.smcl log type: smcl opened on: 9 Feb 2017, 09:40:45 2. 3 . ****Import Performance High Schools**** 4 . import excel "2013_PerformancePolicy_Results_03262014.xls", sheet("High 2013") cellrange(A2:CV516) firs 5 . rename e probation_status 6 . label var f level 7 . rename f level 8 . rename totalpercentofpossiblepoints pct_possible 9 . rename totalpointsreceived tot_points 10 . rename totalpointspossible tot_possible 11 . rename psaecomp psae_composite 12 . rename k act 13 . rename l act_l1 14 . rename m act_12 15 . rename n act_13 16 . rename currentstatus act_status 17 . rename trend act_trend 18 . rename currentstatuspoints act_points 19 . rename currentstatuspointspossible act_possible 20 . rename trendpoints act_trend_pts 21 . rename trendpointspossible act_trend_possible 22 . rename u dropout 23 . rename v dropout_11 24 . rename w dropout_12 25 . rename x dropout_13 26 . rename y dropout_status

27 . rename z dropout_trend

- CTU Thursday February 9 09:43:08 2017 Page 2
- 28 . rename aa dropout_points
- 29 . rename ab dropout_possible
- 30 . rename ac dropout_trend_pts
- 31 . rename ad dropout_trend_possible
- 32 . rename ae freshman
- 33 . rename af freshman_11
- 34 . rename ag freshman_12
- 35 . rename ah freshman_13
- 36 . rename ai freshman_status
- 37 . rename aj freshman_trend
- 38 . rename ak freshman_points
- 39 . rename al freshman_possible
- 40 . rename am freshman_trend_pts
- 41 . rename an freshman_trend_possible
- 42 . rename ao attend
- 43 . rename ap attend_11
- 44 . rename aq attend_12
- 45 . rename ar attend_13
- 46 . rename as attend_status
- 47 . rename at attend_trend
- 48 . rename au attend_points
- 49 . rename av attend_possible
- 50 . rename aw attend_trend_pts
- 51 . rename ax attend_trend_possible
- 52 . rename ay psae_read
- 53 . rename az psae_read_11
- 54 . rename ba psae_read_12
- 55 . rename bb psae_read_13

- CTU Thursday February 9 09:43:08 2017 Page 3
- 56 . rename bc psae_read_status
- 57 . rename bd psae_read_trend
- 58 . rename be psae_read_points
- 59 . rename bf psae_read_possible
- 60 . rename bg psae_read_trend_pts
- 61 . rename bh psae_read_trend_possible
- 62 . rename bi psae_math
- 63 . rename bj psae_math_11
- 64 . rename bk psae_math_12
- 65 . rename bl psae_math_13
- 66 . rename bm psae_math_status
- 67 . rename bn psae_math_trend
- 68 . rename bo psae_math_points
- 69 . rename bp psae_math_possible
- 70 . rename bg psae_math_trend_pts
- 71 . rename br psae_math_trend_possible
- 72 . rename bs psae_sci
- 73 . rename bt psae_sci_l1
- 74 . rename bu psae_sci_12
- 75 . rename bv psae_sci_13
- 76 . rename bw psae_sci_status
- 77 . rename bx psae_sci_trend
- 78 . rename by psae_sci_points
- 79 . rename bz psae_sci_possible
- 80 . rename ca psae_sci_trend_pts
- 81 . rename cb psae_sci_trend_possible
- 82 . rename cc ap_enroll
- 83 . rename cd ap_enroll_11

CTU Thursday February 9 09:43:08 2017 Page 4

- 84 . rename ce ap_enroll_12
- 85 . rename cf ap_enroll_13
- 86 . rename cg ap_enroll_trend
- 87 . rename ch ap_enroll_trend_pts
- 88 . rename ci ap_enroll_trend_possible
- 89 . rename cj ap_success
- 90 . rename ck ap_success_11
- 91 . rename cl ap_success_12
- 92 . rename cm ap_success_13
- 93 . rename cn ap_success_trend
- 94 . rename co ap_success_trend_pts
- 95 . rename cp ap_success_trend_possible
- 96 . rename reading epas_gain_read
- 97 . rename readingpoints epas_gain_read_pts
- 98 . rename readingpointspossible epas_read_possible
- 99 . rename math epas_math_gain
- 100 . rename mathpoints epas_math_pts
- 101 . rename mathpointspossible epas_math_possible
- 102 . gen year=2013
- 103 . save hs2013.dta, replace
 file hs2013.dta saved
- 104 .

105 . import excel "2013_PerformancePolicy_Results_03262014.xls", sheet("HS 2012") cellrange(A2:CV158) firstr

- 106 . rename e probation_status
- 107 . label var f level
- 108 . rename f level
- 109 . rename totalpercentofpossiblepoints pct_possible
- 110 . rename totalpointsreceived tot_points
- 111 . rename totalpointspossible tot_possible

- CTU Thursday February 9 09:43:08 2017 Page 5
- 112 . rename psaecomp $\ensuremath{\texttt{psae}}\xspace_\ensuremath{\texttt{composite}}\xspace$
- 113 . rename k act
- 114 . rename l act_l1
- 115 . rename m act_l2 $\,$
- 116 . rename n act_13
- 117 . rename currentstatus act_status
- 118 . rename trend act_trend
- 119 . rename currentstatuspoints act_points
- 120 . rename currentstatuspointspossible act_possible
- 121 . rename trendpoints act_trend_pts
- 122 . rename trendpointspossible act_trend_possible
- 123 . rename u dropout
- 124 . rename v dropout_11
- 125 . rename w dropout_12
- 126 . rename x dropout_13
- 127 . rename y dropout_status
- 128 . rename z dropout_trend
- 129 . rename aa dropout_points
- 130 . rename ab dropout_possible
- 131 . rename ac dropout_trend_pts
- 132 . rename ad dropout_trend_possible
- 133 . rename ae freshman
- 134 . rename af freshman_11
- 135 . rename ag freshman_12
- 136 . rename ah freshman_13
- 137 . rename ai freshman_status
- 138 . rename aj freshman_trend
- 139 . rename ak freshman_points

- CTU Thursday February 9 09:43:08 2017 Page 6
- 140 . rename al freshman_possible
- 141 . rename am freshman_trend_pts
- 142 . rename an freshman_trend_possible
- 143 . rename ao attend
- 144 . rename ap attend_11
- 145 . rename aq attend_12
- 146 . rename ar attend_13
- 147 . rename as attend_status
- 148 . rename at attend_trend
- 149 . rename au attend_points
- 150 . rename av attend_possible
- 151 . rename aw attend_trend_pts
- 152 . rename ax attend_trend_possible
- 153 . rename ay $\mathtt{psae_read}$
- 154 . rename az psae_read_11
- 155 . rename ba $\texttt{psae_read_l2}$
- 156 . rename bb psae_read_13
- 157 . rename bc psae_read_status
- 158 . rename bd psae_read_trend
- 159 . rename be psae_read_points
- 160 . rename bf psae_read_possible
- 161 . rename bg psae_read_trend_pts
- 162 . rename bh psae_read_trend_possible
- 163 . rename bi psae_math
- 164 . rename bj psae_math_11
- 165 . rename bk psae_math_12
- 166 . rename bl psae_math_13
- 167 . rename bm psae_math_status

- CTU Thursday February 9 09:43:08 2017 Page 7
- 168 . rename bn psae_math_trend
- 169 . rename bo psae_math_points
- 170 . rename bp psae_math_possible
- 171 . rename bg psae_math_trend_pts
- 172 . rename br psae_math_trend_possible
- 173 . rename bs psae_sci
- 174 . rename bt psae_sci_l1
- 175 . rename bu psae_sci_12
- 176 . rename bv psae_sci_13
- 177 . rename bw psae_sci_status
- 178 . rename bx psae_sci_trend
- 179 . rename by psae_sci_points
- 180 . rename bz psae_sci_possible
- 181 . rename ca psae_sci_trend_pts
- 182 . rename cb psae_sci_trend_possible
- 183 . rename cc ap_enroll
- 184 . rename cd ap_enroll_l1
- 185 . rename ce ap_enroll_12
- 186 . rename cf ap_enroll_13
- 187 . rename cg ap_enroll_trend
- 188 . rename ch ap_enroll_trend_pts
- 189 . rename ci ap_enroll_trend_possible
- 190 . rename cj ap_success
- 191 . rename ck ap_success_l1
- 192 . rename cl ap_success_12
- 193 . rename cm ap_success_13
- 194 . rename cn ap_success_trend
- 195 . rename co ap_success_trend_pts

- CTU Thursday February 9 09:43:08 2017 Page 8
- 196 . rename cp ap_success_trend_possible
- 197 . rename reading epas_gain_read
- 198 . rename readingpoints epas_gain_read_pts
- 199 . rename readingpointspossible epas_read_possible
- 200 . rename math epas_math_gain
- 201 . rename mathpoints epas_math_pts
- 202 . rename mathpointspossible epas_math_possible
- 203 . gen year=2012
- 204 . save hs2012.dta, replace file hs2012.dta saved
- 205 .
- 206 . import excel "2013_PerformancePolicy_Results_03262014.xls", sheet("HS 2011") cellrange(A2:CV157) firstr
- 207 . rename e probation_status
- 208 . label var f level
- 209 . rename f level
- 210 . rename totalpercentofpossiblepoints pct_possible
- 211 . rename totalpointsreceived tot_points
- 212 . rename totalpointspossible tot_possible
- 213 . rename psaecomp psae_composite
- 214 . rename k act
- 215 . rename l act_l1
- 216 . rename m act_12
- 217 . rename n act_13
- 218 . rename currentstatus act_status
- 219 . rename trend act_trend
- 220 . rename currentstatuspoints act_points
- 221 . rename currentstatuspointspossible act_possible
- 222 . rename trendpoints act_trend_pts
- 223 . rename trendpointspossible act_trend_possible

- 224 . rename u dropout
- 225 . rename v dropout_11
- 226 . rename w dropout_12
- 227 . rename x dropout_13
- 228 . rename y dropout_status
- 229 . rename z dropout_trend
- 230 . rename aa dropout_points
- 231 . rename ab dropout_possible
- 232 . rename ac dropout_trend_pts
- 233 . rename ad dropout_trend_possible
- 234 . rename ae freshman
- 235 . rename af freshman_11
- 236 . rename ag freshman_12
- 237 . rename ah freshman_13
- 238 . rename ai freshman_status
- 239 . rename aj freshman_trend
- 240 . rename ak freshman_points
- 241 . rename al freshman_possible
- 242 . rename am freshman_trend_pts
- 243 . rename an freshman_trend_possible
- 244 . rename ao attend
- 245 . rename ap attend_11
- 246 . rename aq attend_12
- 247 . rename ar attend_13
- 248 . rename as attend_status
- 249 . rename at attend_trend
- 250 . rename au attend_points
- 251 . rename av attend_possible

- CTU Thursday February 9 09:43:08 2017 Page 10
- 252 . rename aw attend_trend_pts
- 253 . rename ax attend_trend_possible
- 254 . rename ay psae_read
- 255 . rename az psae_read_11
- 256 . rename ba psae_read_12
- 257 . rename bb psae_read_13
- 258 . rename bc psae_read_status
- 259 . rename bd <code>psae_read_trend</code>
- 260 . rename be psae_read_points
- 261 . rename bf psae_read_possible
- 262 . rename bg psae_read_trend_pts
- 263 . rename bh psae_read_trend_possible
- 264 . rename bi psae_math
- 265 . rename bj psae_math_11
- 266 . rename bk psae_math_12
- 267 . rename bl psae_math_13
- 268 . rename bm psae_math_status
- 269 . rename bn psae_math_trend
- 270 . rename bo psae_math_points
- 271 . rename bp psae_math_possible
- 272 . rename bq psae_math_trend_pts
- 273 . rename br psae_math_trend_possible
- 274 . rename bs psae_sci
- 275 . rename bt psae_sci_l1
- 276 . rename bu psae_sci_12
- 277 . rename bv psae_sci_13
- 278 . rename bw psae_sci_status
- 279 . rename bx psae_sci_trend

- CTU Thursday February 9 09:43:08 2017 Page 11
- 280 . rename by psae_sci_points
- 281 . rename bz psae_sci_possible
- 282 . rename ca psae_sci_trend_pts
- 283 . rename cb psae_sci_trend_possible
- 284 . rename cc ap_enroll
- 285 . rename cd ap_enroll_l1
- 286 . rename ce ap_enroll_12
- 287 . rename cf ap_enroll_13
- 288 . rename cg ap_enroll_trend
- 289 . rename ch ap_enroll_trend_pts
- 290 . rename ci ap_enroll_trend_possible
- 291 . rename cj ap_success
- 292 . rename ck ap_success_11
- 293 . rename cl ap_success_12
- 294 . rename cm ap_success_13
- 295 . rename cn ap_success_trend
- 296 . rename co ap_success_trend_pts
- 297 . rename cp ap_success_trend_possible
- 298 . rename reading epas_gain_read
- 299 . rename readingpoints epas_gain_read_pts
- 300 . rename readingpointspossible epas_read_possible
- 301 . rename math epas_math_gain
- 302 . rename mathpoints epas_math_pts
- 303 . rename mathpointspossible epas_math_possible
- 304 . gen year=2011
- 305 . save hs2011.dta, replace file hs2011.dta saved
- 306 .
- 307 . import excel "2013_PerformancePolicy_Results_03262014.xls", sheet("HS 2010") cellrange(A2:CQ133) firstr

- 308 . label var e level
- 309 . rename e level
- 310 . rename totalpercentofpossiblepoints pct_possible
- 311 . rename totalpointsreceived tot_points
- 312 . rename totalpointspossible tot_possible
- 313 . rename psaecomp psae_composite
- 314 . rename j act
- 315 . rename k act_l1
- 316 . rename l act_l2
- 317 . rename m act_13
- 318 . rename currentstatus act_status
- 319 . rename trend act_trend
- 320 . rename currentstatuspoints act_points
- 321 . rename currentstatuspointspossible act_possible
- 322 . rename trendpoints act_trend_pts
- 323 . rename trendpointspossible act_trend_possible
- 324 . rename t dropout
- 325 . rename u dropout_11
- 326 . rename v dropout_12
- 327 . rename w dropout_13
- 328 . rename x dropout_status
- 329 . rename y dropout_trend
- 330 . rename z dropout_points
- 331 . rename aa dropout_possible
- 332 . rename ab dropout_trend_pts
- 333 . rename ac dropout_trend_possible
- 334 . rename ad freshman
- 335 . rename ae freshman_11

- CTU Thursday February 9 09:43:08 2017 Page 13
- 336 . rename af freshman_12
- 337 . rename ag freshman_13
- 338 . rename ah freshman_status
- 339 . rename ai freshman_trend
- 340 . rename aj freshman_points
- 341 . rename ak freshman_possible
- 342 . rename al freshman_trend_pts
- 343 . rename am freshman_trend_possible
- 344 . rename an attend
- 345 . rename ao attend_11
- 346 . rename ap attend_12
- 347 . rename aq attend_status
- 348 . rename ar attend_trend
- 349 . rename as attend_points
- 350 . rename at attend_possible
- 351 . rename au attend_trend_pts
- 352 . rename av attend_trend_possible
- 353 . rename aw psae_read
- 354 . rename ax psae_read_11
- 355 . rename ay psae_read_12
- 356 . rename az psae_read_status
- 357 . rename ba psae_read_trend
- 358 . rename bb psae_read_points
- 359 . rename bc psae_read_possible
- 360 . rename bd psae_read_trend_pts
- 361 . rename be psae_read_trend_possible
- 362 . rename bf psae_math
- 363 . rename bg psae_math_11

- CTU Thursday February 9 09:43:08 2017 Page 14
- 364 . rename bh psae_math_12
- 365 . rename bi psae_math_status
- 366 . rename bj psae_math_trend
- 367 . rename bk psae_math_points
- 368 . rename bl psae_math_possible
- 369 . rename bm psae_math_trend_pts
- 370 . rename bn psae_math_trend_possible
- 371 . rename bo psae_sci
- 372 . rename bp psae_sci_l1
- 373 . rename bg psae_sci_12
- 374 . rename br psae_sci_status
- 375 . rename bs psae_sci_trend
- 376 . rename bt psae_sci_points
- 377 . rename bu psae_sci_possible
- 378 . rename bv psae_sci_trend_pts
- 379 . rename bw psae_sci_trend_possible
- 380 . rename bx ap_enroll
- 381 . rename by ap_enroll_l1
- 382 . rename bz ap_enroll_12
- 383 . rename ca ap_enroll_13
- 384 . rename cb ap_enroll_trend
- 385 . rename cc ap_enroll_trend_pts
- 386 . rename cd ap_enroll_trend_possible
- 387 . rename ce ap_success
- 388 . rename cf ap_success_11
- 389 . rename cg ap_success_12
- 390 . rename ch ap_success_13
- 391 . rename ci ap_success_trend

CTU Thursday February 9 09:43:08 2017 Page 15
392 . rename cj ap_success_trend_pts
393 . rename ck ap_success_trend_possible
394 . rename reading epas_gain_read
395 . rename readingpoints epas_gain_read_pts
396 . rename readingpointspossible epas_read_possible
397 . rename math epas_math_gain
398 . rename mathpoints epas_math_pts
399 . rename mathpointspossible epas_math_possible
400 . gen year=2010
401 . save hs2010.dta, replace file hs2010.dta saved
402 . 403 . import excel "2013_PerformancePolicy_Results_03262014.xls", sheet("HS 2009") cellrange(A2:CI122) firstr
404 . label var e level
405 . rename e level
406 . rename totalpercentofpossiblepoints pct_possible
407 . rename totalpointsreceived tot_points
408 . rename totalpointspossible tot_possible
409 . rename psaecomp psae_composite
410 . rename j act
411 . rename k act_11
412 . rename l act_l2
413 . rename m act_13
414 . rename currentstatus act_status
415 . rename trend act_trend
416 . rename currentstatuspoints act_points
417 . rename currentstatuspointspossible act_possible
418 . rename trendpoints act_trend_pts

419 . rename trendpointspossible act_trend_possible

- 420 . rename t dropout
- 421 . rename u dropout_l1
- 422 . rename v dropout_12
- 423 . rename w dropout_13
- 424 . rename x dropout_status
- 425 . rename y dropout_trend
- 426 . rename z dropout_points
- 427 . rename as dropout_possible
- 428 . rename ab dropout_trend_pts
- 429 . rename ac dropout_trend_possible
- 430 . rename ad freshman
- 431 . rename ae freshman_11
- 432 . rename af freshman_12
- 433 . rename ag freshman_13
- 434 . rename ah freshman_status
- 435 . rename ai freshman_trend
- 436 . rename aj freshman_points
- 437 . rename ak freshman_possible
- 438 . rename al freshman_trend_pts
- 439 . rename am freshman_trend_possible
- 440 . rename an attend
- 441 . rename ao attend_11
- 442 . rename ap attend_12
- 443 . rename aq attend_13
- 444 . rename ar attend_status
- 445 . rename as attend_points
- 446 . rename at attend_possible
- 447 . rename au psae_read

- CTU Thursday February 9 09:43:08 2017 Page 17
- 448 . rename av psae_read_11
- 449 . rename aw psae_read_12
- 450 . rename ax psae_read_13
- 451 . rename ay <code>psae_read_status</code>
- 452 . rename az psae_read_points
- 453 . rename ba psae_read_possible
- 454 . rename bb <code>psae_math</code>
- 455 . rename bc psae_math_l1
- 456 . rename bd psae_math_12
- 457 . rename be psae_math_13
- 458 . rename bf psae_math_status
- 459 . rename bg psae_math_points
- 460 . rename bh psae_math_possible
- 461 . rename bi psae_sci
- 462 . rename bj psae_sci_l1
- 463 . rename bk psae_sci_12
- 464 . rename bl psae_sci_13
- 465 . rename bm psae_sci_status
- 466 . rename bn psae_sci_points
- 467 . rename bo psae_sci_possible
- 468 . rename bp ap_enroll
- 469 . rename bg ap_enroll_11
- 470 . rename br ap_enroll_12
- 471 . rename bs ap_enroll_13
- 472 . rename bt ap_enroll_trend
- 473 . rename bu ap_enroll_trend_pts
- 474 . rename bv ap_enroll_trend_possible
- 475 . rename bw ap_success

```
CTU Thursday February 9 09:43:08 2017
                                           Page 18
476 . rename bx ap_success_11
477 . rename by ap_success_12
478 . rename bz ap_success_13
479 . rename ca ap_success_trend
480 . rename cb ap_success_trend_pts
481 . rename cc ap_success_trend_possible
482 . rename reading epas_gain_read
483 . rename readingpoints epas_gain_read_pts
484 . rename readingpointspossible epas_read_possible
485 . rename math epas_math_gain
486 . rename mathpoints epas_math_pts
487 . rename mathpointspossible epas_math_possible
488 . gen year=2009
489 . save hs2009.dta, replace
   file hs2009.dta saved
490
491 . import excel "2013_PerformancePolicy_Results_03262014.xls", sheet("HS 2008") cellrange(A2:CI114) firstr
492 . label var e level
493 . rename e level
494 . rename totalpercentofpossiblepoints pct_possible
495 . rename totalpointsreceived tot_points
496 . rename totalpointspossible tot_possible
497 . rename psaecomp psae_composite
498 . rename j act
499 . rename k act_l1
500 . rename 1 act_12
501 . rename m act_13
502 . rename currentstatus act_status
```

503 . rename trend act_trend

- CTU Thursday February 9 09:43:08 2017 Page 19
- 504 . rename currentstatuspoints act_points
- 505 . rename currentstatuspointspossible act_possible
- 506 . rename trendpoints act_trend_pts
- 507 . rename trendpointspossible act_trend_possible
- 508 . rename t dropout
- 509 . rename u dropout_11
- 510 . rename v dropout_12
- 511 . rename w dropout_13
- 512 . rename x dropout_status
- 513 . rename y dropout_trend
- 514 . rename z dropout_points
- 515 . rename aa dropout_possible
- 516 . rename ab dropout_trend_pts
- 517 . rename ac dropout_trend_possible
- 518 . rename ad freshman
- 519 . rename ae freshman_11
- 520 . rename af freshman_12
- 521 . rename ag freshman_13
- 522 . rename ah freshman_status
- 523 . rename ai freshman_trend
- 524 . rename aj freshman_points
- 525 . rename ak freshman_possible
- 526 . rename al freshman_trend_pts
- 527 . rename am freshman_trend_possible
- 528 . rename an attend
- 529 . rename ao attend_11
- 530 . rename ap attend_12
- 531 . rename aq attend_13

- CTU Thursday February 9 09:43:08 2017 Page 20
- 532 . rename ar attend_status
- 533 . rename as attend_points
- 534 . rename at attend_possible
- 535 . rename au $\texttt{psae_read}$
- 536 . rename av psae_read_11
- 537 . rename aw <code>psae_read_l2</code>
- 538 . rename ax psae_read_13
- 539 . rename ay psae_read_status
- 540 . rename az psae_read_points
- 541 . rename ba psae_read_possible
- 542 . rename bb <code>psae_math</code>
- 543 . rename bc psae_math_11
- 544 . rename bd psae_math_12
- 545 . rename be <code>psae_math_13</code>
- 546 . rename bf psae_math_status
- 547 . rename bg psae_math_points
- 548 . rename bh psae_math_possible
- 549 . rename bi psae_sci
- 550 . rename bj psae_sci_l1
- 551 . rename bk psae_sci_12
- 552 . rename bl psae_sci_13
- 553 . rename bm psae_sci_status
- 554 . rename bn psae_sci_points
- 555 . rename bo psae_sci_possible
- 556 . rename bp ap_enroll
- 557 . rename bg ap_enroll_l1
- 558 . rename br ap_enroll_12
- 559 . rename bs ap_enroll_13

- CTU Thursday February 9 09:43:08 2017 Page 21
- 560 . rename bt ap_enroll_trend
- 561 . rename bu ap_enroll_trend_pts
- 562 . rename bv ap_enroll_trend_possible
- 563 . rename bw ap_success
- 564 . rename bx ap_success_11
- 565 . rename by <code>ap_success_12</code>
- 566 . rename bz ap_success_13
- 567 . rename ca ap_success_trend
- 568 . rename cb ap_success_trend_pts
- 569 . rename cc ap_success_trend_possible
- 570 . rename reading epas_gain_read
- 571 . rename readingpoints epas_gain_read_pts
- 572 . rename readingpointspossible epas_read_possible
- 573 . rename math epas_math_gain
- 574 . rename mathpoints epas_math_pts
- 575 . rename mathpointspossible epas_math_possible
- 576 . gen year=2008
- 577 . save hs2008.dta, replace file hs2008.dta saved

578 .

- 579 . append using hs2009.dta (note: variable schoolname was str34, now str36 to accommodate using data's values) (note: variable psae_read_points was str5, now str17 to accommodate using data's values) (note: variable psae_math_points was str5, now str17 to accommodate using data's values) (note: variable psae_sci_points was str5, now str17 to accommodate using data's values)
- 580 . append using hs2010.dta (note: variable tot_points was str5, now str6 to accommodate using data's values)
- 581 . append using hs2011.dta (note: variable attend_trend was str5, now str18 to accommodate using data's values) (note: variable psae_math_trend was str5, now str17 to accommodate using data's values)
- 582 . append using hs2012.dta (note: variable schoolname was str36, now str38 to accommodate using data's values)
- 583 . append using hs2013.dta (note: variable psae_math_trend was str17, now str18 to accommodate using data's values)

CTU Thursday February 9 09:43:08 2017 Page 22 584 . egen school_year=concat(schoolid year), punct(_) 585 . gen hs=1 586 . save hs_panel.dta, replace file hs_panel.dta saved 587 . 588 . *****Import Performance Indicators ELEM**** 589 . 590 . import excel "2013_PerformancePolicy_Results_03262014.xls", sheet("Elem 2013") cellrange(A2:BY473) firs 591 . 592 . rename e probation_status 593 . label var f level 594 . rename f level 595 . rename totalpercentofpossiblepoints pct_possible 596 . rename totalpointsreceived tot_points 597 . rename totalpointspossible tot_possible 598 . rename isatcompositemeetsexcee isat_meet_exceed 599 . rename k isat_read 600 . rename l isat_read_11 601 . rename m isat_read_12 602 . rename n isat_read_13 603 . rename currentstatus isat_read_status_pts 604 . rename trend isat_read_trend 605 . rename currentstatuspoints isat_read_curstatpts 606 . rename currentstatuspointspossible isat_read_crstatposs 607 . rename trendpoints istat_read_trendpts 608 . rename trendpointspossible isat_read_trendposs 609 . rename u isat_math 610 . rename v isat_math_11 611 . rename w isat_math_12 612 . rename x isat_math_13

- CTU Thursday February 9 09:43:08 2017 Page 23
- 613 . rename y isat_math_status_pts
- 614 . rename z isat_math_trend
- 615 . rename aa isat_math_curstatpts
- 616 . rename ab isat_math_crstatposs
- 617 . rename ac istat_math_trendpts
- 618 . rename ad isat_math_trendposs
- 619 . rename ae isat_science
- 620 . rename af isat_science_l1
- 621 . rename ag isat_science_12
- 622 . rename ah isat_science_13
- 623 . rename ai isat_science_status_pts
- 624 . rename aj isat_science_trend
- 625 . rename ak isat_science_curstatpts
- 626 . rename al isat_science_crstatposs
- 627 . rename am istat_science_trendpts
- 628 . rename an isat_science_trendposs
- 629 . rename ao isat_exceeds
- 630 . rename ap isat_exceeds_11
- 631 . rename aq isat_exceeds_12
- 632 . rename ar isat_exceeds_13
- 633 . rename as isat_exceeds_status_pts
- 634 . rename at isat_exceeds_trend
- 635 . rename au isat_exceeds_curstatpts
- 636 . rename av isat_exceeds_crstatposs
- 637 . rename aw istat_exceeds_trendpts
- 638 . rename ax isat_exceeds_trendposs
- 639 . rename highgrade higrade
- 640 . rename az isat_higrade

- CTU Thursday February 9 09:43:08 2017 Page 24
- 641 . rename ba isat_higrade_l1
- 642 . rename bb isat_higrade_12
- 643 . rename bc isat_higrade_13
- 644 . rename bd isat_higrade_status_pts
- 645 . rename be isat_higrade_trend
- 646 . rename bf isat_higrade_curstatpts
- 647 . rename bg isat_higrade_crstatposs
- 648 . rename bh istat_higrade_trendpts
- 649 . rename bi isat_higrade_trendposs
- 650 . rename bj attend
- 651 . rename bk <code>attend_l1</code>
- 652 . rename bl attend_12
- 653 . rename bm attend_13
- 654 . rename bn attend_status_pts
- 655 . rename bo attend_trend
- 656 . rename bp attend_curstatpts
- 657 . rename bg attend_crstatposs
- 658 . rename br attend_trendpts
- 659 . rename bs <code>attend_trendposs</code>
- 660 . rename reading va_read
- 661 . rename points va_read_pts
- 662 . rename pointspossible va_read_poss
- 663 . rename math va_math
- 664 . rename bx va_math_pts
- 665 . rename by va_math_poss
- 666 . gen year=2013
- 667 . save chi_schools2013.dta, replace file chi_schools2013.dta saved

696 . rename ab isat_math_crstatposs

- CTU Thursday February 9 09:43:08 2017 Page 26
- 697 . rename ac istat_math_trendpts
- 698 . rename ad isat_math_trendposs
- 699 . rename ae isat_science
- 700 . rename af isat_science_l1
- 701 . rename ag isat_science_12
- 702 . rename ah isat_science_13
- 703 . rename ai isat_science_status_pts
- 704 . rename aj isat_science_trend
- 705 . rename ak isat_science_curstatpts
- 706 . rename al isat_science_crstatposs
- 707 . rename am istat_science_trendpts
- 708 . rename an isat_science_trendposs
- 709 . rename ao isat_exceeds
- 710 . rename ap isat_exceeds_11
- 711 . rename aq isat_exceeds_12
- 712 . rename ar isat_exceeds_13
- 713 . rename as isat_exceeds_status_pts
- 714 . rename at isat_exceeds_trend
- 715 . rename au isat_exceeds_curstatpts
- 716 . rename av isat_exceeds_crstatposs
- 717 . rename aw istat_exceeds_trendpts
- 718 . rename ax isat_exceeds_trendposs
- 719 . rename highgrade higrade
- 720 . rename az isat_higrade
- 721 . rename ba isat_higrade_l1
- 722 . rename bb isat_higrade_12
- 723 . rename bc isat_higrade_13
- 724 . rename bd isat_higrade_status_pts

- CTU Thursday February 9 09:43:08 2017 Page 27
- 725 . rename be isat_higrade_trend
- 726 . rename bf isat_higrade_curstatpts
- 727 . rename bg isat_higrade_crstatposs
- 728 . rename bh istat_higrade_trendpts
- 729 . rename bi isat_higrade_trendposs
- 730 . rename bj attend
- 731 . rename bk attend_11
- 732 . rename bl attend_12
- 733 . rename bm attend_13
- 734 . rename bn <code>attend_status_pts</code>
- 735 . rename bo <code>attend_trend</code>
- 736 . rename bp attend_curstatpts
- 737 . rename bg attend_crstatposs
- 738 . rename br attend_trendpts
- 739 . rename bs <code>attend_trendposs</code>
- 740 . rename reading va_read
- 741 . rename points va_read_pts
- 742 . rename pointspossible va_read_poss
- 743 . rename math va_math
- 744 . rename bx va_math_pts
- 745 . rename by va_math_poss
- 746 . gen year=2012
- 747 . save chi_schools2012.dta, replace file chi_schools2012.dta saved
- 748 .
 749 .
 749 .
 749 .
 750 .
 751 . import excel "2013_PerformancePolicy_Results_03262014.XLS", sheet("Elem 2011") cellrange(A2:BY522) firs
 752 . rename e probation_status
- 753 . label var f level

754 . rename f level

- 755 . rename totalpercentofpossiblepoints pct_possible
- 756 . rename totalpointsreceived tot_points
- 757 . rename totalpointspossible tot_possible
- 758 . rename isatcompositemeetsexcee isat_meet_exceed
- 759 . rename k isat_read
- 760 . rename l isat_read_11
- 761 . rename m isat_read_12
- 762 . rename n isat_read_13
- 763 . rename currentstatus isat_read_status_pts
- 764 . rename trend isat_read_trend
- 765 . rename currentstatuspoints isat_read_curstatpts
- 766 . rename currentstatuspointspossible isat_read_crstatposs
- 767 . rename trendpoints istat_read_trendpts
- 768 . rename trendpointspossible isat_read_trendposs
- 769 . rename u isat_math
- 770 . rename v isat_math_11
- 771 . rename w isat_math_12
- 772 . rename x isat_math_13
- 773 . rename y isat_math_status_pts
- 774 . rename z isat_math_trend
- 775 . rename aa isat_math_curstatpts
- 776 . rename ab isat_math_crstatposs
- 777 . rename ac istat_math_trendpts
- 778 . rename ad isat_math_trendposs
- 779 . rename ae isat_science
- 780 . rename af isat_science_11
- 781 . rename ag isat_science_12

- CTU Thursday February 9 09:43:08 2017 Page 29
- 782 . rename ah isat_science_13
- 783 . rename ai isat_science_status_pts
- 784 . rename aj isat_science_trend
- 785 . rename ak isat_science_curstatpts
- 786 . rename al isat_science_crstatposs
- 787 . rename am istat_science_trendpts
- 788 . rename an isat_science_trendposs
- 789 . rename ao <code>isat_exceeds</code>
- 790 . rename ap isat_exceeds_11
- 791 . rename aq isat_exceeds_12
- 792 . rename ar isat_exceeds_13
- 793 . rename as isat_exceeds_status_pts
- 794 . rename at isat_exceeds_trend
- 795 . rename au isat_exceeds_curstatpts
- 796 . rename av isat_exceeds_crstatposs
- 797 . rename aw istat_exceeds_trendpts
- 798 . rename ax isat_exceeds_trendposs
- 799 . rename highgrade higrade
- 800 . rename az isat_higrade
- 801 . rename ba isat_higrade_l1
- 802 . rename bb isat_higrade_12
- 803 . rename bc isat_higrade_13
- 804 . rename bd isat_higrade_status_pts
- 805 . rename be isat_higrade_trend
- 806 . rename bf isat_higrade_curstatpts
- 807 . rename bg isat_higrade_crstatposs
- 808 . rename bh istat_higrade_trendpts
- 809 . rename bi isat_higrade_trendposs

- 810 . rename bj attend
- 811 . rename bk attend_11
- 812 . rename bl attend_12
- 813 . rename bm attend_13
- 814 . rename bn attend_status_pts
- 815 . rename bo attend_trend
- 816 . rename bp attend_curstatpts
- 817 . rename bq attend_crstatposs
- 818 . rename br attend_trendpts
- 819 . rename bs <code>attend_trendposs</code>
- 820 . rename reading va_read
- 821 . rename points va_read_pts
- 822 . rename pointspossible va_read_poss
- 823 . rename math va_math
- 824 . rename bx va_math_pts
- 825 . rename by va_math_poss
- 826 . gen year=2011
- 827 . save chi_schools2011.dta, replace file chi_schools2011.dta saved
- 828 .
- 829 . import excel "2013_PerformancePolicy_Results_03262014.xls", sheet("Elem 2010") cellrange(A2:BX511) firs
- 830 . rename e level
- 831 . rename totalpercentofpossiblepoints pct_possible
- 832 . rename totalpointsreceived tot_points
- 833 . rename totalpointspossible tot_possible
- 834 . rename isatcompositemeetsexcee isat_meet_exceed
- 835 . rename j isat_read
- 836 . rename k isat_read_11
- 837 . rename l isat_read_12

- 838 . rename m isat_read_13
- 839 . rename currentstatus isat_read_status_pts
- 840 . rename trend isat_read_trend
- 841 . rename currentstatuspoints isat_read_curstatpts
- 842 . rename currentstatuspointspossible isat_read_crstatposs
- 843 . rename trendpoints istat_read_trendpts
- 844 . rename trendpointspossible isat_read_trendposs
- 845 . rename t isat_math
- 846 . rename u isat_math_11
- 847 . rename v isat_math_12
- 848 . rename w isat_math_13
- 849 . rename x isat_math_status_pts
- 850 . rename y isat_math_trend
- 851 . rename z isat_math_curstatpts
- 852 . rename aa isat_math_crstatposs
- 853 . rename ab istat_math_trendpts
- 854 . rename ac isat_math_trendposs
- 855 . rename ad isat_science
- 856 . rename ae isat_science_l1
- 857 . rename af isat_science_12
- 858 . rename ag isat_science_13
- 859 . rename ah isat_science_status_pts
- 860 . rename ai isat_science_trend
- 861 . rename aj isat_science_curstatpts
- 862 . rename ak isat_science_crstatposs
- 863 . rename al istat_science_trendpts
- 864 . rename am isat_science_trendposs
- 865 . rename an isat_exceeds

- CTU Thursday February 9 09:43:08 2017 Page 32
- 866 . rename ao isat_exceeds_11
- 867 . rename ap isat_exceeds_12
- 868 . rename aq isat_exceeds_13
- 869 . rename ar isat_exceeds_status_pts
- 870 . rename as isat_exceeds_trend
- 871 . rename at isat_exceeds_curstatpts
- 872 . rename au isat_exceeds_crstatposs
- 873 . rename av istat_exceeds_trendpts
- 874 . rename aw isat_exceeds_trendposs
- 875 . rename highgrade higrade
- 876 . rename ay isat_higrade
- 877 . rename az isat_higrade_l1
- 878 . rename ba isat_higrade_12
- 879 . rename bb isat_higrade_13
- 880 . rename bc isat_higrade_status_pts
- 881 . rename bd isat_higrade_trend
- 882 . rename be isat_higrade_curstatpts
- 883 . rename bf isat_higrade_crstatposs
- 884 . rename bg istat_higrade_trendpts
- 885 . rename bh isat_higrade_trendposs
- 886 . rename bi attend
- 887 . rename bj attend_11
- 888 . rename bk attend_12
- 889 . rename bl attend_13
- 890 . rename bm attend_status_pts
- 891 . rename bn <code>attend_trend</code>
- 892 . rename bo attend_curstatpts
- 893 . rename bp attend_crstatposs

- CTU Thursday February 9 09:43:08 2017 Page 33
- 894 . rename bg attend_trendpts
- 895 . rename br attend_trendposs
- 896 . rename reading va_read
- 897 . rename points va_read_pts
- 898 . rename pointspossible va_read_poss
- 899 . rename math va_math
- 900 . rename bw va_math_pts
- 901 . rename bx va_math_poss
- 902 . gen year=2010
- 903 . save chi_schools2010.dta, replace
 file chi_schools2010.dta saved
- 904 .
- 905 . import excel "2013_PerformancePolicy_Results_03262014.xls", sheet("Elem 2009") cellrange(A2:BX497) firs
- 906 . rename e level
- 907 . rename totalpercentofpossiblepoints pct_possible
- 908 . rename totalpointsreceived tot_points
- 909 . rename totalpointspossible tot_possible
- 910 . rename isatcompositemeetsexcee isat_meet_exceed
- 911 . rename j isat_read
- 912 . rename k isat_read_11
- 913 . rename l isat_read_12
- 914 . rename m isat_read_13
- 915 . rename currentstatus isat_read_status_pts
- 916 . rename trend isat_read_trend
- 917 . rename currentstatuspoints isat_read_curstatpts
- 918 . rename currentstatuspointspossible isat_read_crstatposs
- 919 . rename trendpoints istat_read_trendpts
- 920 . rename trendpointspossible isat_read_trendposs
- 921 . rename t isat_math

- CTU Thursday February 9 09:43:08 2017 Page 34
- 922 . rename u isat_math_11
- 923 . rename v isat_math_12
- 924 . rename w isat_math_13
- 925 . rename x isat_math_status_pts
- 926 . rename y isat_math_trend
- 927 . rename z isat_math_curstatpts
- 928 . rename aa isat_math_crstatposs
- 929 . rename ab istat_math_trendpts
- 930 . rename ac isat_math_trendposs
- 931 . rename ad isat_science
- 932 . rename ae isat_science_11
- 933 . rename af isat_science_12
- 934 . rename ag isat_science_13
- 935 . rename ah isat_science_status_pts
- 936 . rename ai isat_science_trend
- 937 . rename aj isat_science_curstatpts
- 938 . rename ak isat_science_crstatposs
- 939 . rename al istat_science_trendpts
- 940 . rename am isat_science_trendposs
- 941 . rename an isat_exceeds
- 942 . rename ao isat_exceeds_11
- 943 . rename ap isat_exceeds_12
- 944 . rename aq isat_exceeds_13
- 945 . rename ar isat_exceeds_status_pts
- 946 . rename as isat_exceeds_trend
- 947 . rename at isat_exceeds_curstatpts
- 948 . rename au isat_exceeds_crstatposs
- 949 . rename av istat_exceeds_trendpts

- CTU Thursday February 9 09:43:08 2017 Page 35
- 950 . rename aw isat_exceeds_trendposs
- 951 . rename highgrade higrade
- 952 . rename ay isat_higrade
- 953 . rename az isat_higrade_l1
- 954 . rename ba isat_higrade_12
- 955 . rename bb isat_higrade_13
- 956 . rename bc isat_higrade_status_pts
- 957 . rename bd isat_higrade_trend
- 958 . rename be isat_higrade_curstatpts
- 959 . rename bf isat_higrade_crstatposs
- 960 . rename bg istat_higrade_trendpts
- 961 . rename bh isat_higrade_trendposs
- 962 . rename bi attend
- 963 . rename bj attend_11
- 964 . rename bk attend_12
- 965 . rename bl attend_13
- 966 . rename bm attend_status_pts
- 967 . rename bn <code>attend_trend</code>
- 968 . rename bo attend_curstatpts
- 969 . rename bp attend_crstatposs
- 970 . rename bg attend_trendpts
- 971 . rename br attend_trendposs
- 972 . rename reading va_read
- 973 . rename points va_read_pts
- 974 . rename pointspossible va_read_poss
- 975 . rename math va_math
- 976 . rename bw va_math_pts
- 977 . rename bx va_math_poss

CTU Thursday February 9 09:43:08 2017 Page 36 978 . gen year=2009 979 . save chi_schools2009.dta, replace file chi_schools2009.dta saved 980 981 . import excel "2013_PerformancePolicy_Results_03262014.xls", sheet("ES 2008") case(lower) cellrange(A2:B 982 . rename e level 983 . rename totalpercentofpossiblepoints pct_possible 984 . rename totalpointsreceived tot_points 985 . rename totalpointspossible tot_possible 986 . rename isatcompositemeetsexcee isat_meet_exceed 987 . rename j isat_read 988 . rename k isat_read_11 989 . rename l isat_read_12 990 . rename m isat_read_13 991 . rename currentstatus isat_read_status_pts 992 . rename trend isat_read_trend 993 . rename currentstatuspoints isat_read_curstatpts 994 . rename currentstatuspointspossible isat_read_crstatposs 995 . rename trendpoints istat_read_trendpts 996 . rename trendpointspossible isat_read_trendposs 997 . rename t isat_math 998 . rename u isat_math_11 999 . rename v isat_math_12

- 1000 . rename w isat_math_13
- 1001 . rename x isat_math_status_pts
- 1002 . rename y isat_math_trend
- 1003 . rename z isat_math_curstatpts
- 1004 . rename aa isat_math_crstatposs
- 1005 . rename ab istat_math_trendpts

- CTU Thursday February 9 09:43:08 2017 Page 37
- 1006 . rename ac isat_math_trendposs
- 1007 . rename ad isat_science
- 1008 . rename ae isat_science_l1
- 1009 . rename af isat_science_12
- 1010 . rename ag isat_science_13
- 1011 . rename ah isat_science_status_pts
- 1012 . rename ai isat_science_trend
- 1013 . rename aj isat_science_curstatpts
- 1014 . rename ak isat_science_crstatposs
- 1015 . rename al istat_science_trendpts
- 1016 . rename am isat_science_trendposs
- 1017 . rename an isat_exceeds
- 1018 . rename ao isat_exceeds_11
- 1019 . rename ap isat_exceeds_12
- 1020 . rename aq isat_exceeds_13
- 1021 . rename ar isat_exceeds_status_pts
- 1022 . rename as isat_exceeds_trend
- 1023 . rename at isat_exceeds_curstatpts
- 1024 . rename au isat_exceeds_crstatposs
- 1025 . rename av istat_exceeds_trendpts
- 1026 . rename aw isat_exceeds_trendposs
- 1027 . rename highgrade higrade
- 1028 . rename ay isat_higrade
- 1029 . rename az isat_higrade_l1
- 1030 . rename ba isat_higrade_12
- 1031 . rename bb isat_higrade_13
- 1032 . rename bc isat_higrade_status_pts
- 1033 . rename bd isat_higrade_trend

- CTU Thursday February 9 09:43:08 2017 Page 38
- 1034 . rename be isat_higrade_curstatpts
- 1035 . rename bf isat_higrade_crstatposs
- 1036 . rename bg istat_higrade_trendpts
- 1037 . rename bh isat_higrade_trendposs
- 1038 . rename bi attend
- 1039 . rename bj attend_l1
- 1040 . rename bk attend_12
- 1041 . rename bl attend_13
- 1042 . rename bm attend_status_pts
- 1043 . rename bn <code>attend_trend</code>
- 1044 . rename bo <code>attend_curstatpts</code>
- 1045 . rename bp <code>attend_crstatposs</code>
- 1046 . rename by attend_trendpts
- 1047 . rename br <code>attend_trendposs</code>
- 1048 . rename reading va_read
- 1049 . rename points va_read_pts
- 1050 . rename pointspossible va_read_poss
- 1051 . rename math va_math
- 1052 . rename bw va_math_pts
- 1053 . rename bx va_math_poss
- 1054 . gen year=2008
- 1055 . save chi_schools2008.dta, replace
 file chi_schools2008.dta saved

1056 .

- 1057 .
- 1058 . append using chi_schools2009.dta
 (note: variable schoolname was str32, now str35 to accommodate using data's values)
- 1059 . append using chi_schools2010.dta
- 1060 . append using chi_schools2011.dta
- 1061 . append using chi_schools2012.dta
 (note: variable schoolname was str35, now str36 to accommodate using data's values)

```
CTU Thursday February 9 09:43:08 2017
                                            Page 39
1062 . append using chi_schools2013.dta
1063 . egen school_year=concat(schoolid year), punct(_)
1064 .
1065 . append using hs_panel.dta
     (note: variable schoolname was str36, now str38 to accommodate using data's values)
     (note: variable tot_points was str2, now str6 to accommodate using data's values)
1066 .
1067 . drop if schoolid==""
     (345 observations deleted)
1068 . drop if year==.
     (0 observations deleted)
1069 . save chi_schools_panel.dta, replace
     file chi_schools_panel.dta saved
1070 .
1072 .
1073 . *import excel "parent_survey_results_2016.xlsx", sheet("School Level Data 2016") firstrow case(lower) a
1074 . *keep schoolid responserate schoolcommunityscore parentteacherpartnershipscor qualityoffacilitiesscore
1075 . *gen year=2016
1076 . *egen school_year=concat(schoolid year), punct(_)
1077 . *save survey16.dta, replace
1078 .
1079 . *import excel "parent_survey_results_2015_FINAL_LOCKED.xlsx", sheet("School Level Data 2015") firstrow
1080 . *keep schoolid responserate schoolcommunityscore parentteacherpartnershipscor qualityoffacilitiesscore
1081 . *gen year=2015
1082 . *egen school_year=concat(schoolid year), punct(_)
1083 . *save survey15.dta, replace
1084 .
1085 . *import excel "parent_survey_results_2014_FINAL.xlsx", sheet("School Level Data 2014") firstrow case(lo
1086 . *keep schoolid responserate schoolcommunityscore parentteacherpartnershipscor qualityoffacilitiesscore
1087 . *gen year=2014
1088 . *egen school_year=concat(schoolid year), punct(_)
1089 . *save survey14.dta, replace
1090 .
1091 . import excel "ParentSurveyResults_2013.xlsx", sheet("School Level Data 2013") firstrow case(lower) alls
1092 . keep schoolid responserate schoolcommunityscore parentteacherpartnershipscor qualityoffacilitiesscore h
1093 . gen year=2013
1094 . egen school_year=concat(schoolid year), punct(_)
1095 . save survey13.dta, replace
    file survey13.dta saved
1096
1097 . import excel "ParentSurveyResults_2012.xlsm", sheet("Survey_data_2012") firstrow case(lower) allstring
1098 . keep school_id response_rate school_community_score pt_partnership_score facilities_score
```

CTU Thursday February 9 09:43:08 2017 Page 40 1099 . rename school_id schoolid 1100 . rename response responserate 1101 . rename school_comm schoolcommunityscore 1102 . rename pt_partner parentteacherpartnershipscor 1103 . rename facilities qualityoffacilitiesscore 1104 . gen year=2012 1105 . egen school_year=concat(schoolid year), punct(_) 1106 . save survey12.dta, replace file survey12.dta saved 1107 . 1108 . append using survey13.dta (note: variable responserate was str4, now str17 to accommodate using data's values) 1109 . order school_year year responserate schoolcommunityscore parentteacherpartnershipscor qualityoffaciliti 1110 . drop if schoolid=="" (2 observations deleted) 1111 . drop schoolid 1112 . drop if schoolcommunityscore=="" (529 observations deleted) 1113 . destring schoolcommunityscore- howlikelyareyoutorecommend, replace schoolcommunityscore: all characters numeric; replaced as byte parentteacherpartnershipscor: all characters numeric; replaced as byte qualityoffacilitiesscore: all characters numeric; replaced as byte (1 missing value generated) howlikelyareyoutorecommend: all characters numeric; replaced as double (416 missing values generated) 1114 . save survey_panel.dta, replace file survey_panel.dta saved 1115 . 1117 . 1118 . 1119 . import excel "lep_iep_frl_report_2013.xls", sheet("All Schools") cellrange(A2:J685) firstrow case(lower 1120 . rename f pct_ell 1121 . rename h pct_sped 1122 . rename j pct_frl 1123 . keep schoolid pct_ell pct_sped pct_frl

CTU Thursday February 9 09:43:08 2017 Page 41 1124 . destring pct_ell pct_sped pct_frl, replace pct_ell: all characters numeric; replaced as double (1 missing value generated) pct_sped: all characters numeric; replaced as double (1 missing value generated) pct_frl: all characters numeric; replaced as double (1 missing value generated) 1125 . gen year=2013 1126 . drop if schoolid=="" (1 observation deleted) 1127 . save frl13.dta, replace file frl13.dta saved 1128 . 1129 . import excel "lep_iep_frl_report_2012.xls", sheet("All Schools") cellrange(A2:K686) firstrow case(lower 1130 . rename g pct_ell 1131 . rename i pct_sped 1132 . rename k pct_frl 1133 . keep schoolid pct_ell pct_sped pct_frl 1134 . destring pct_ell pct_sped pct_frl, replace pct_ell: all characters numeric; replaced as double
pct_sped: all characters numeric; replaced as double pct_frl: all characters numeric; replaced as double 1135 . gen year=2012 1136 . drop if schoolid=="" (1 observation deleted) 1137 . save frl12.dta, replace file frl12.dta saved 1138 . 1139 . import excel "lep_iep_frl_report_2011.xls", sheet("All Schools") cellrange(A2:J716) firstrow case(lower 1140 . rename f pct_ell 1141 . rename h pct_sped 1142 . rename j pct_frl 1143 . keep unit pct_ell pct_sped pct_frl 1144 . destring pct_ell pct_sped pct_frl, replace pct_ell: all characters numeric; replaced as double (226 missing values generated) pct_sped: all characters numeric; replaced as double (32 missing values generated) pct_frl: all characters numeric; replaced as double (32 missing values generated)

```
CTU Thursday February 9 09:43:08 2017
                                          Page 42
1145 . gen year=2011
1146 . drop if unit==""
    (32 observations deleted)
1147 . save frl11.dta, replace
    file frll1.dta saved
1148 .
1149 . import excel "lep_iep_frl_report_2010_revised_20130506.xls", sheet("All Schools") cellrange(A2:M681) fi
1150 . rename f pct_ell
1151 . rename h pct_sped
1152 . rename j pct_frl
1153 . keep unit pct_ell pct_sped pct_frl
1154 . destring pct_ell pct_sped pct_frl, replace
    pct_ell: all characters numeric; replaced as double
     (189 missing values generated)
    pct_sped: all characters numeric; replaced as double
     (5 missing values generated)
    pct_frl: all characters numeric; replaced as double
    (5 missing values generated)
1155 . gen year=2010
1156 . drop if unit==""
     (4 observations deleted)
1157 . save frl10.dta, replace
    file frl10.dta saved
1158 .
1160 .
1161 . import excel "FY09_Racial_Ethnic_Survey.xls", sheet("All Schools") cellrange(A2:0669) firstrow case(low
1162 . rename no white
1163 . rename pct pct_white
1164 . rename h black
1165 . rename i pct_black
1166 . rename j native
1167 . rename k pct_native
1168 . rename l api
1169 . rename m pct_api
```

CTU Thursday February 9 09:43:08 2017 Page 43 1170 . rename n hisp 1171 . rename o pct_hisp 1172 . gen year=2009 1173 . save cps_demog09.dta, replace file cps_demog09.dta saved 1174 . 1175 . import excel "FY10_Racial_Ethnic_Survey.xls", sheet("All Schools") cellrange(A2:0677) firstrow case(low 1176 . rename no white 1177 . rename pct pct_white 1178 . rename h black 1179 . rename i pct_black 1180 . rename j native 1181 . rename k pct_native 1182 . rename l api 1183 . rename m pct_api 1184 . rename n hisp 1185 . rename o pct_hisp 1186 . gen year=2010 1187 . merge 1:1 unit using frl10.dta (note: variable unit was str4, now str66 to accommodate using data's values) # of obs. Result not matched 2 from master 1 (_merge==1) from using (_merge==2) 1 matched 674 (_merge==3) 1188 . drop _merge 1189 . save cps_demog10.dta, replace file cps_demog10.dta saved 1190 . 1191 . import excel "FY11_Racial_Ethnic_Survey.xls", sheet("All Schools") cellrange(A2:W683) firstrow case(low

1192 . rename no white

CTU	Thursday	February	9	09:43:08	2017	Page 44
-----	----------	----------	---	----------	------	---------

1193 . rename pct pct_white

- 1194 . rename h black
- 1195 . rename i pct_black
- 1196 . rename j native
- 1197 . rename k pct_native
- 1198 . rename l api
- 1199 . rename m pct_api
- 1200 . rename n hisp
- 1201 . rename o pct_hisp
- 1202 . rename p multi
- 1203 . rename q pct_multi
- 1204 . rename r asian
- 1205 . rename s pct_asian
- 1206 . rename t pacisl
- 1207 . rename u pct_pacisl
- 1208 . rename v na
- 1209 . rename w pct_na
- 1210 . gen year=2011
- 1211 . merge 1:1 unit using frl11.dta

Result	# of obs.	
not matched from master from using		(_merge==1) (_merge==2)
matched	680	(_merge==3)

1212 . drop _merge

```
1213 . save cps_demogl1.dta, replace file cps_demogl1.dta saved
```

1214 .

1215 . import excel "FY12_Racial_Ethnic_Survey.xls", sheet("All Schools") cellrange(A2:W687) firstrow case(low

- 1216 . rename no white
- 1217 . rename pct pct_white
- 1218 . rename h black
- 1219 . rename i pct_black
- 1220 . rename j api
- 1221 . rename k pct_api
- 1222 . rename 1 native
- 1223 . rename m pct_native
- 1224 . rename n hisp
- 1225 . rename o pct_hisp
- 1226 . rename p multi
- 1227 . rename q pct_multi
- 1228 . rename r asian
- 1229 . rename s pct_asian
- 1230 . rename t pacisl
- 1231 . rename u pct_pacisl
- 1232 . rename v na
- 1233 . rename w pct_na
- 1234 . gen year=2012
- 1235 . drop if schoolid=="" (2 observations deleted)
- 1236 . merge 1:1 schoolid using frl12.dta

Result	# of obs.	
not matched matched	0 683	(_merge==3)

1237 . drop _merge

1238 . save cps_demog12.dta, replace file cps_demog12.dta saved

1239 .

1240 . import excel "FY13_Racial_Ethnic_Survey.xls", sheet("All Schools") cellrange(A2:W685) firstrow case(low

- 1241 . rename no white
- 1242 . rename pct pct_white
- 1243 . rename g black
- 1244 . rename h pct_black
- 1245 . rename i api
- 1246 . rename j pct_api
- 1247 . rename k native
- 1248 . rename 1 pct_native
- 1249 . rename m hisp
- 1250 . rename n pct_hisp
- 1251 . rename o multi
- 1252 . rename p pct_multi
- 1253 . rename q asian
- 1254 . rename r pct_asian
- 1255 . rename s pacisl
- 1256 . rename t pct_pacisl
- 1257 . rename u na
- 1258 . rename v pct_na
- 1259 . drop w
- 1260 . gen year=2013
- 1261 . drop if schoolid==""
 (2 observations deleted)
- 1262 . merge 1:1 schoolid using frl13.dta
 (note: variable schoolid was str6, now str15 to accommodate using data's values)

Result	# of obs.	
not matched from master from using		(_merge==1) (_merge==2)
matched	681	(_merge==3)

CTU Thursday February 9 09:43:08 2017 Page 47 1263 . drop _merge 1264 . save cps_demog13.dta, replace file cps_demog13.dta saved 1265 1266 . append using cps_demog12.dta (note: variable network was str34, now str40 to accommodate using data's values) 1267 . append using cps_demog11.dta 1268 . append using cps_demog10.dta (note: variable area was str2, now str15 to accommodate using data's values) (note: variable unit was str4, now str66 to accommodate using data's values) (note: variable api was str3, now str5 to accommodate using data's values) (note: variable pct_api was str3, now str17 to accommodate using data's values) 1269 . append using cps_demog09.dta (note: variable school was str37, now str49 to accommodate using data's values) 1270 . 1271 . egen school_year=concat(schoolid year), punct(_) 1272 . drop if schoolid=="" (5 observations deleted) 1273 . drop if schoolid=="District Totals" (1 observation deleted) 1274 . drop if year==. (0 observations deleted) 1275 . destring schoolid, replace force schoolid: all characters numeric; replaced as long 1276 . drop if schoolid==. (0 observations deleted) 1277 . destring total- pct_na, replace total: all characters numeric; replaced as int (1 missing value generated) white: all characters numeric; replaced as int (1 missing value generated) pct_white: all characters numeric; replaced as double (1 missing value generated) black: all characters numeric; replaced as int (1 missing value generated) pct_black: all characters numeric; replaced as double (1 missing value generated) api: all characters numeric; replaced as int (1 missing value generated) pct_api: all characters numeric; replaced as double (1 missing value generated) native: all characters numeric; replaced as byte (1 missing value generated) pct_native: all characters numeric; replaced as double (1 missing value generated) hisp: all characters numeric; replaced as int (1 missing value generated) pct_hisp: all characters numeric; replaced as double (1 missing value generated) multi: all characters numeric; replaced as int (1341 missing values generated) pct_multi: all characters numeric; replaced as double (1341 missing values generated) asian: all characters numeric; replaced as int (1341 missing values generated)

CTU Thursday February 9 09:43:08 2017 Page 48 replaced as double pct_asian: all characters numeric; (1341 missing values generated) pacisl: all characters numeric; replaced as byte (1341 missing values generated) pct_pacisl: all characters numeric; replaced as double (1341 missing values generated) na: all characters numeric; replaced as int (1341 missing values generated) replaced as double pct_na: all characters numeric; (1341 missing values generated) 1278 . label var pct_white "% White" 1279 . label var pct_black "% Black" 1280 . label var pct_hisp "% Hispanic" 1281 . gen pct_blackhisp=pct_black+pct_hisp (1 missing value generated) 1282 . label var pct_blackhisp "% Black or Hispanic" 1283 . save chi_demog_panel.dta, replace file chi_demog_panel.dta saved 1284 . 1285 . import delimited "CPS_Schools_2013-2014_Academic_Year.csv", clear (37 vars, 672 obs) 1286 . rename ischoolid schoolid 1287 . drop if schoolid==. (3 observations deleted) 1288 . keep schoolid ncesid isbeid class schooltype s_type schoolcategory chartertype governance gradestructur > eanumber latitude longitude 1289 . save idbridge.dta, replace file idbridge.dta saved 1290 . 1291 . use chi_schools_panel.dta 1292 . destring schoolid, replace schoolid: all characters numeric; replaced as long 1293 . merge m:1 school_year using chi_demog_panel.dta (note: variable area was str2, now str15 to accommodate using data's values) (note: variable unit was str4, now str66 to accommodate using data's values) (note: variable school_year was str12, now str21 to accommodate using data's values) Result # of obs. not matched 804 from master 636 (_merge==1) from using **168** (_merge==2)

3,220 (_merge==3)

matched

1294 . drop if schoolname==""
 (168 observations deleted)

1295 . destring pct_possible- va_math_poss, replace pct_possible: all characters numeric; replaced as double tot_points: all characters numeric; replaced as double tot_possible: all characters numeric; replaced as byte isat_meet_exceed: all characters numeric; replaced as double (847 missing values generated) isat_read: all characters numeric; replaced as double (850 missing values generated) isat_read_l1: all characters numeric; replaced as double (898 missing values generated) isat_read_12: all characters numeric; replaced as double (945 missing values generated) isat_read_13: all characters numeric; replaced as double (997 missing values generated) isat_read_status_pts: contains nonnumeric characters; no replace isat_read_trend: all characters numeric; replaced as double (946 missing values generated) isat_read_curstatpts: all characters numeric; replaced as byte (850 missing values generated) isat_read_crstatposs: all characters numeric; replaced as byte (843 missing values generated) istat_read_trendpts: all characters numeric; replaced as byte (946 missing values generated) isat_read_trendposs: all characters numeric; replaced as byte (843 missing values generated) isat_math: all characters numeric; replaced as double (850 missing values generated) isat_math_l1: all characters numeric; replaced as double (898 missing values generated) isat_math_12: all characters numeric; replaced as double (945 missing values generated) isat_math_13: all characters numeric; replaced as double (998 missing values generated) isat_math_status_pts: all characters numeric; replaced as double (850 missing values generated) isat_math_trend: all characters numeric; replaced as double (946 missing values generated) isat_math_curstatpts: all characters numeric; replaced as byte (850 missing values generated) isat_math_crstatposs: all characters numeric; replaced as byte (843 missing values generated) istat_math_trendpts: all characters numeric; replaced as byte (946 missing values generated) isat_math_trendposs: all characters numeric; replaced as byte (843 missing values generated) isat_science: all characters numeric; replaced as double (908 missing values generated) replaced as double isat_science_l1: all characters numeric; (954 missing values generated) isat_science_l2: all characters numeric; replaced as double (999 missing values generated) replaced as double isat_science_13: all characters numeric; (1045 missing values generated) isat_science_status_pts: all characters numeric; replaced as double (908 missing values generated) isat_science_trend: all characters numeric; replaced as double (1003 missing values generated) isat_science_curstatpts: all characters numeric; replaced as byte (908 missing values generated) isat_science_crstatposs: all characters numeric; replaced as byte (844 missing values generated) istat_science_trendpts: all characters numeric; replaced as byte (1003 missing values generated) isat_science_trendposs: all characters numeric; replaced as byte

(843 missing values generated) isat_exceeds: all characters numeric; replaced as double (847 missing values generated) isat_exceeds_l1: all characters numeric; replaced as double (895 missing values generated) isat_exceeds_12: all characters numeric; replaced as double (943 missing values generated) isat_exceeds_13: all characters numeric; replaced as double (995 missing values generated) replaced as double isat_exceeds_status_pts: all characters numeric; (847 missing values generated) isat_exceeds_trend: all characters numeric; replaced as double (942 missing values generated) isat_exceeds_curstatpts: all characters numeric; replaced as byte (847 missing values generated) isat_exceeds_crstatposs: all characters numeric; replaced as byte (843 missing values generated) replaced as byte istat_exceeds_trendpts: all characters numeric; (942 missing values generated) isat_exceeds_trendposs: all characters numeric; replaced as byte (843 missing values generated) higrade: all characters numeric; replaced as byte (847 missing values generated) isat_higrade: all characters numeric; replaced as double (849 missing values generated) isat_higrade_l1: all characters numeric; replaced as double (1006 missing values generated) isat_higrade_12: all characters numeric; replaced as double (1071 missing values generated) isat_higrade_13: all characters numeric; replaced as double (1155 missing values generated) isat_higrade_status_pts: all characters numeric; replaced as double (849 missing values generated) isat_higrade_trend: all characters numeric; replaced as double (1069 missing values generated) isat_higrade_curstatpts: all characters numeric; replaced as byte (849 missing values generated) isat_higrade_crstatposs: all characters numeric; replaced as byte (843 missing values generated) istat_higrade_trendpts: all characters numeric; replaced as byte (1069 missing values generated) isat_higrade_trendposs: all characters numeric; replaced as byte (843 missing values generated) attend: all characters numeric; replaced as double (2 missing values generated) attend_l1: all characters numeric; replaced as double (115 missing values generated) attend_12: all characters numeric; replaced as double (201 missing values generated) attend_13: all characters numeric; replaced as double (404 missing values generated) attend_status_pts: all characters numeric; replaced as double (844 missing values generated) attend_trend: all characters numeric; replaced as double (399 missing values generated) attend_curstatpts: all characters numeric; replaced as byte (844 missing values generated) attend_crstatposs: all characters numeric; replaced as byte (843 missing values generated) attend_trendpts: all characters numeric; replaced as byte (923 missing values generated) attend_trendposs: all characters numeric; replaced as byte (843 missing values generated) va_read: all characters numeric; replaced as double (904 missing values generated) va_read_pts: all characters numeric; replaced as byte (904 missing values generated)

CTU Thursday February 9 09:43:08 2017 va_read_poss: all characters numeric; replaced as byte (843 missing values generated) va_math: all characters numeric; replaced as double (904 missing values generated) va_math_pts: all characters numeric; replaced as byte (904 missing values generated) va_math_poss: all characters numeric; replaced as byte (843 missing values generated)

Page 51

1296 .

1297 . drop _merge

1298 . merge m:1 schoolid using idbridge.dta

Result	# of obs.	
not matched	375	
from master		(_merge==1)
from using	29	(_merge==2)
matched	3,510	(_merge==3)

1299 . drop _merge

1300 . merge m:1 school_year using survey_panel.dta

Result	# of obs.	
not matched from master from using	-	(_merge==1) (_merge==2)
matched	811	(_merge==3)

1301 . drop _merge

1302 . save chi_merged_panel.dta, replace file chi_merged_panel.dta saved

1303 . pwcorr pct_blackhisp pct_possible isat_meet_exceed isat_read isat_math isat_science isat_exceeds isat_h (analytic weights assumed)

	pct_bl~p p	oct_po~e is	sat_~ed is	at_~ad isa	at_m~h isa	t_s~e isat	_~ds
pct_blackh~p pct_possible	1.0000 -0.3270 -0.5476	1.0000	1.0000				
isat_meet_~d isat_read isat math	-0.5637	0.3755 0.3356 0.3016	0.9801	1.0000 0.9274	1.0000		
isat_science isat_exceeds	-0.5782 -0.7371	0.5600 0.4253	0.7258 0.7761	0.6702 0.7797	0.5917 0.6939	1.0000 0.6964	1.0000
isat_higrade attend	-0.6664 -0.2138	0.4325	0.6999	0.6961	0.6299	0.6349	0.9083
va_read va_math	-0.2314 -0.1556	0.2242 0.1773	0.3751 0.2622	0.3733 0.2087	0.3143 0.2714	0.4118 0.2777	0.3577 0.2728
	isat_h~e	attend v	va_read v	a_math			
isat_higrade attend va_read va_math	1.0000 0.4911 0.3574 0.3105	1.0000 0.3447 0.1863	1.0000 0.5371	1.0000			

CTU Thursday February 9 09:43:09 2017 Page 52 1304 . gen probation=0 1305 . recode probation 0=1 if probation_status=="Probation" (probation: 699 changes made) 1306 . gen level3=0 1307 . recode level3 0=1 if level=="Level 3" (level3: 1460 changes made) 1308 . encode governance, gen(gov) 1309 . recode hs .=0 (hs: 3059 changes made) 1310 . drop if unit=="" (46 observations deleted) 1311 . replace pct_possible=pct_possible*100 if year==2009 (614 real changes made) 1312 . destring psae_composite- psae_sci_trend_possible, replace psae_composite: all characters numeric; replaced as double (3123 missing values generated) act: all characters numeric; replaced as double (3125 missing values generated) act_l1: all characters numeric; replaced as double (3207 missing values generated) act_12: all characters numeric; replaced as double (3263 missing values generated) act_13: all characters numeric; replaced as double (3315 missing values generated) act_status: all characters numeric; replaced as double (3125 missing values generated) act_trend: all characters numeric; replaced as double (3265 missing values generated) act points: all characters numeric; replaced as byte (3125 missing values generated) act_possible: all characters numeric; replaced as byte (3013 missing values generated) act_trend_pts: all characters numeric; replaced as byte (3265 missing values generated) act_trend_possible: all characters numeric; replaced as byte (3013 missing values generated) dropout: all characters numeric; replaced as double (3023 missing values generated) dropout_l1: all characters numeric; replaced as double (3096 missing values generated) dropout_12: all characters numeric; replaced as double (3143 missing values generated) replaced as double dropout_13: all characters numeric; (3196 missing values generated) dropout_status: all characters numeric; replaced as double (3023 missing values generated) dropout_trend: all characters numeric; replaced as double (3147 missing values generated) dropout_points: all characters numeric; replaced as byte (3023 missing values generated) dropout_possible: all characters numeric; replaced as byte (3013 missing values generated) dropout_trend_pts: all characters numeric; replaced as byte (3147 missing values generated) dropout_trend_possible: all characters numeric; replaced as byte (3013 missing values generated) freshman: all characters numeric; replaced as double (3235 missing values generated) freshman_l1: all characters numeric; replaced as double

(3255 missing values generated) freshman_12: all characters numeric; replaced as double (3278 missing values generated) freshman_13: all characters numeric; replaced as double (3314 missing values generated) freshman_status: all characters numeric; replaced as double (3235 missing values generated) freshman_trend: all characters numeric; replaced as double (3290 missing values generated) freshman_points: all characters numeric; replaced as byte (3235 missing values generated) freshman_possible: all characters numeric; replaced as byte (3013 missing values generated) freshman_trend_pts: all characters numeric; replaced as byte (3290 missing values generated) freshman_trend_possible: all characters numeric; replaced as byte (3013 missing values generated) attend_status: all characters numeric; replaced as double (3014 missing values generated) attend_points: all characters numeric; replaced as byte (3014 missing values generated) attend_possible: all characters numeric; replaced as byte (3013 missing values generated) psae_read: all characters numeric; replaced as double (3126 missing values generated) psae_read_l1: all characters numeric; replaced as double (3208 missing values generated) psae_read_12: all characters numeric; replaced as double (3264 missing values generated) psae_read_13: all characters numeric; replaced as double (3399 missing values generated) psae_read_status: all characters numeric; replaced as double (3126 missing values generated) replaced as double psae_read_points: all characters numeric; (3126 missing values generated) psae_read_possible: all characters numeric; replaced as byte (3013 missing values generated) psae_math: all characters numeric; replaced as double (3126 missing values generated) psae_math_l1: all characters numeric; replaced as double (3208 missing values generated) psae_math_12: all characters numeric; replaced as double (3264 missing values generated) psae_math_13: all characters numeric; replaced as double (3399 missing values generated) psae_math_status: all characters numeric; replaced as double (3126 missing values generated) psae_math_points: all characters numeric; replaced as double (3126 missing values generated) psae_math_possible: all characters numeric; replaced as byte (3013 missing values generated) psae_sci: all characters numeric; replaced as double (3126 missing values generated) psae_sci_l1: all characters numeric; replaced as double (3208 missing values generated) psae_sci_l2: all characters numeric; replaced as double (3264 missing values generated) psae_sci_13: all characters numeric; replaced as double (3399 missing values generated) psae_sci_status: all characters numeric; replaced as double (3126 missing values generated) psae_sci_points: all characters numeric; replaced as double (3126 missing values generated) psae_sci_possible: all characters numeric; replaced as byte (3013 missing values generated) ap_enroll: all characters numeric; replaced as double (3183 missing values generated)

CTU Thursday February 9 09:43:09 2017 Page 54 replaced as double ap_enroll_l1: all characters numeric; (3218 missing values generated) ap_enroll_12: all characters numeric; replaced as double (3253 missing values generated) ap_enroll_13: all characters numeric; replaced as double (3286 missing values generated) ap_enroll_trend: all characters numeric; replaced as double (3270 missing values generated) ap_enroll_trend_pts: all characters numeric; replaced as byte (3270 missing values generated) ap_enroll_trend_possible: all characters numeric; replaced as byte (3013 missing values generated) ap_success: all characters numeric; replaced as double (3309 missing values generated) ap_success_l1: all characters numeric; replaced as double (3339 missing values generated) ap_success_12: all characters numeric; replaced as double (3378 missing values generated) ap_success_13: all characters numeric; replaced as double (3424 missing values generated) ap_success_trend: all characters numeric; replaced as double (3393 missing values generated) ap_success_trend_pts: all characters numeric; replaced as byte (3393 missing values generated) ap_success_trend_possible: all characters numeric; replaced as byte (3013 missing values generated) epas_gain_read: all characters numeric; replaced as byte (3141 missing values generated) epas_gain_read_pts: all characters numeric; replaced as byte (3141 missing values generated) epas_read_possible: all characters numeric; replaced as byte (3013 missing values generated) epas_math_gain: all characters numeric; replaced as byte (3141 missing values generated) epas_math_pts: all characters numeric; replaced as byte (3141 missing values generated) epas math possible: all characters numeric; replaced as byte (3013 missing values generated) attend_trend_pts: all characters numeric; replaced as byte (3332 missing values generated) attend_trend_possible: all characters numeric; replaced as byte (3245 missing values generated) psae_read_trend: all characters numeric; replaced as double (3429 missing values generated) psae_read_trend_pts: all characters numeric; replaced as double (3429 missing values generated) psae_read_trend_possible: all characters numeric; replaced as byte (3245 missing values generated) psae_math_trend: all characters numeric; replaced as double (3429 missing values generated) psae_math_trend_pts: all characters numeric; replaced as double (3429 missing values generated) psae_math_trend_possible: all characters numeric; replaced as byte (3245 missing values generated) psae_sci_trend: all characters numeric; replaced as double (3429 missing values generated) psae_sci_trend_pts: all characters numeric; replaced as double (3429 missing values generated) psae_sci_trend_possible: all characters numeric; replaced as byte (3245 missing values generated)

CTU Thursday February 9 09:43:09 2017 Page 55 1313 . save chi_merged_panel.dta, replace file chi_merged_panel.dta saved 1314 . 1315 . *****What Predicts Probation Status & Level 3 Status?**** 1316 . char gov [omit] 1 1317 . 1318 . logit probation pct_possible i.year if year>2010 & hs==0 & gov==3, or -831.43255 Iteration 0: log likelihood = log likelihood = -437.50861 Iteration 1: Iteration 2: log likelihood = -420.14968 Iteration 3: log likelihood = -419.83943 Iteration 4: log likelihood = -419.83887 Iteration 5: log likelihood = -419.83887 Logistic regression Number of obs 1,256 = LR chi2(3) = 823.19 Prob > chi2 = 0.0000 0.4950 Log likelihood = -419.83887 Pseudo R2 = z P>|z| [95% Conf. Interval] probation Odds Ratio Std. Err. pct_possible .8636248 .0073812 -17.15 0.000 .8492785 .8782135 year 2012 .8829156 .1857418 -0.59 0.554 .584587 1.333488 .7691296 .1656723 -1.22 0.223 2013 .5042533 1.173141 _cons 2532.535 1264.599 15.69 0.000 951.734 6738,998

1319 . est store prob1, title("% Possible")

1320 . logit probation pct_black va_read va_math i.year if year>2010 & hs==0 & gov==3, or

Iteration	0:	log	likelihood	=	-817.55681
Iteration	1:	log	likelihood	=	-609.6454
Iteration	2:	log	likelihood	=	-604.3184
Iteration	3:	log	likelihood	=	-604.31048
Iteration	4:	log	likelihood	=	-604.31048

Logistic regression Number of obs 1,232 = LR chi2(5) 426.49 = Prob > chi2 = 0.0000 Log likelihood = -604.31048 Pseudo R2 0.2608 = [95% Conf. Interval] probation Odds Ratio Std. Err. z P>|z| 15.56 0.000 pct_black 1.027323 .0017801 1.02384 1.030818 0.000 .5805019 .0534293 -5.91 .4846846 .6952613 va read .6663 .0561363 -4.82 0.000 .564879 .7859305 va_math year 2012 .9281777 .161278 -0.43 0.668 .6602802 1.30477 -0.08 0.937 2013 .9862664 .1719012 .7008646 1.387888 .1589392 .0247411 -11.82 0.000 .1171466 .2156415 _cons

1321 . est store prob2, title("% Black & Value Added")

1322 . logit probation pct_blackhisp va_read va_math i.year if year>2010 & hs==0 & gov==3, or

Iteration	0:	log	likelihood	=	-817.55681
Iteration	1:	log	likelihood	=	-630.09251
Iteration	2:	log	likelihood	=	-592.7423
Iteration	3:	log	likelihood	=	-587.56942
Iteration	4:	log	likelihood	=	-587.4623
Iteration	5:	log	likelihood	=	-587.46209
Iteration	6:	log	likelihood	=	-587.46209

Logistic regression

Log likelihood = -587.46209

probation	Odds Ratio	Std. Err.	Z	P> z	[95% Conf. In	terval]
pct_blackhisp va_read va_math	1.145323 .6121056 .7363165	.0168333 .055722 .0599987	9.23 -5.39 -3.76	0.000 0.000 0.000	1.112802 .5120811 .6276311	1.178796 .731668 .8638229
year 2012 2013	.9300775 .9629299	.1601858 .1658949	-0.42 -0.22	0.674 0.826	.6636178 .6869869	1.303528 1.349711
_cons	2.02e-06	2.88e-06	-9.20	0.000	1.23e-07	.000033

Number of obs

Pseudo R2

LR chi2(5)

Prob > chi2 =

=

=

=

1,232

460.19

0.0000

0.2814

1323 . est store prob3, title("% Black or Hispanic & Value Added")

1324 . xml_tab probl(, or) prob2(, or) prob3(, or), save("Logit Models Probation.xml") replace

note: results saved to E:\Current Work\Cla-Chicago Litigation\CPS/Logit Models Probation.xml click here to open with Excel

1325 .

1326 . logit level3 pct_black va_read va_math i.year if hs==0 & gov==3, or

Iteration	0:	log	likelihood	=	-1297.833
Iteration	1:	log	likelihood	=	-894.09896
Iteration	2:	log	likelihood	=	-866.91573
Iteration	3:	log	likelihood	=	-866.60163
Iteration	4:	log	likelihood	=	-866.60134
Iteration	5:	log	likelihood	=	-866.60134

Logistic regression	Number of obs	=	2,035
	LR chi2(7)	=	862.46
	Prob > chi2	=	0.0000
Log likelihood = -866.60134	Pseudo R2	=	0.3323

level3	Odds Ratio	Std. Err.	z	P> z	[95% Conf. In	terval]
pct_black va_read va_math	1.022816 .4847118 .5147563	.0015051 .0335847 .0315093	15.33 -10.45 -10.85	0.000 0.000 0.000	1.019871 .423161 .45656	1.02577 .5552156 .5803706
year 2010 2011 2012 2013	1.013848 .5253442 .5238322 .6733921	.2024747 .1065263 .107031 .1365931	0.07 -3.17 -3.16 -1.95	0.945 0.002 0.002 0.051	.6854566 .3530548 .3509717 .4524884	1.499566 .7817101 .7818301 1.002141

CTU	TU Thursday February 9 09:43:09 2017			Page 57			
	_cons	.1869137	.0326259	-9.61	0.000	.1327587	.2631595

1327 . est store level3b, title("% Black & Value Added")

1328 . logit level3 pct_blackhisp va_read va_math hs i.year if hs==0 & gov==3, or

note: hs c	omitte	ed be	ecause of c	colli	nearity
Iteration	0:	log	likelihood	1 =	-1297.833
Iteration	1:	log	likelihood	1 =	-904.53777
Iteration	2:	log	likelihood	1 =	-848.02818
Iteration	3:	log	likelihood	1 =	-840.2852
Iteration	4:	log	likelihood	1 =	-840.15279
Iteration	5:	log	likelihood	1 =	-840.15277

Logistic regression

Number of obs Number or one LR chi2(7) -bi2 = = 2,035 = 915.36 LR Chiz, Prob > chi2 0.0000 Log likelihood = -840.15277 = 0.3526

level3	Odds Ratio	Std. Err.	z P> z		[95% Conf. Interval]	
pct_blackhisp va_read	1.108591 .4723008	.0108963	10.49 -10.72	0.000	1.087439 .4117665	1.130154
va_math hs	.5614039 1	.0334023 (omitted)	-9.70	0.000	.4996096	.6308412
year						
2010	1.070065	.2141695	0.34	0.735	.7228453	1.584072
2011	.5739987	.1160307	-2.75	0.006	.3862293	.8530542
2012	.5773152	.116644	-2.72	0.007	.3885362	.8578167
2013	.7263571	.1453381	-1.60	0.110	.4907176	1.075149
_cons	.0000388	.0000372	-10.60	0.000	5.94e-06	.0002537

1329 . est store level3c, title("% Black or Hispanic & Value Added")

1330 . xml_tab level3b(, or) level3c(, or), save("Logit Models Level 3.xml") replace

note: results saved to E:\Current Work\Cla-Chicago Litigation\CPS/Logit Models Level 3.xml click here to open with Excel

1331 .

1332 . reg pct_possible pct_black hs i.year if gov==3

Source	SS	df	MS	Number of obs - F(6, 2532)		=	2,539
Model Residual	277077.442 884112.329	6 2,532	46179.573 349.17548	7 Prob 5 R-sc	o > F quared	= = =	132.25 0.0000 0.2386 0.2368
Total	1161189.77	2,538	457.5215	-	R-squared MSE	=	18.686
pct_possible	Coef.	Std. Err.	t P	> t	[95% Conf	. In	terval]
pct_black hs	2154688 -9.265218	.0087728 .9592117	-24.56 -9.66	0.000	232673 -11.1463		1982662 -7.384298
year 2010 2011 2012 2013	3.758426 7.001067 7.151639 7.626989	1.189674 1.182426 1.177623 1.178786	3.16 5.92 6.07 6.47	0.002 0.000 0.000 0.000	1.4255 4.6824 4.8424 5.3155	47 36	6.091259 9.319687 9.460842 9.938472

_cons	62.66933	.9672445	64.79	0.000	60.77266	64.566
-------	----------	----------	-------	-------	----------	--------

1333 . est store points1, title("% Black")

1334 . reg pct_possible pct_blackhisp hs i.year if gov==3

Source	SS	df	MS	Number		=	2,539 225.58
Model Residual	404489.074 756700.697	6 2,532	67414.8456 298.854936	5 Prob 5 R-squ	uared	= = =	225.58 0.0000 0.3483 0.3468
Total	1161189.77	2,538	457.52158	Adj R-square Root MSE		= b =	17.287
pct_possible	Coef.	Std. Err.	t I	2> t	[95% Co	onf. In	terval]
pct_blackhisp hs	5391991 -8.321099	.0160321 .8885766	-33.63 -9.36	0.000 0.000	570 -10.0		5077617 -6.578688
year 2010 2011 2012 2013	3.724981 7.041725 7.083555 7.544592	1.100617 1.093836 1.089431 1.09048	3.38 6.44 6.50 6.92	0.001 0.000 0.000 0.000	4.8 4.94	56678 39682 17289 06268	5.883182 9.18663 9.219822 9.682916
_cons	98.41156	1.597032	61.62	0.000	95.2	27994	101.5432

1335 . est store points2, title("% Black or Hispanic")

1336 . xml_tab points1 points2, save("Regression Models Points.xml") replace

note: results saved to E:\Current Work\Cla-Chicago Litigation\CPS/Regression Models Points.xml
click here to open with Excel

1337 .

1338 .

1339 . ****What are the underlying patterns of racial disparity for each underlying indicator?**** 1340 .

1341 . reg attend pct_blackhisp if year==2013 [wei= total]
 (analytic weights assumed)

(sum of wgt is 3.8211e+05)

Source	SS	df	MS	Number of	01010	618 = 29.28
Model Residual	614.534993 12929.4992	1 616	614.534993 20.9894467	R-squar	Fed	= 0.0000 = 0.0454
Total	13544.0341	617	21.951433	- Adj R-so Root MS	-	= 0.0438 = 4.5814
attend	Coef.	Std. Err.	t I	?> t [95% Conf.	Interval]
pct_blackhisp _cons	0466602 96.91096	.0086233 .7531749	-5.41 128.67	0.000 0.000	063594 95.4318	

CTU Thursday February 9 09:43:09 2017 Page 59 1342 . local r2: display %5.4f e(r2) 1343 . graph twoway scatter attend pct_blackhisp if year==2013 [wei= total], ms(oh) msize(small) || lfit atten > nic & Attendance) subtitle(CPS 2013) note(rsq=`r2') (analytic weights assumed) 1344 . graph save attend_blackhisp13.gph, replace (file attend_blackhisp13.gph saved) 1345 . 1346 . reg attend pct_black if year==2013 [wei= total] (analytic weights assumed) (sum of wgt is 3.8211e+05) Source SS df MS Number of obs 618 = 67.78 F(1, 616) = 1 1342.62682 Model 1342.62682 Prob > F = 0.0000 Residual 12201.4073 616 19.8074794 R-squared = 0.0991 Adj R-squared = 0.0977

attend	Coef.	Std. Err.	t	P> t	[95% Conf. Ir	nterval]
pct_black	0363668	.0044172	-8.23	0.000	0450414	0276923
_cons	94.3593	.2469001	382.18		93.87443	94.84417

21.951433

Root MSE

4.4506

=

617

1347 . local r2: display 5.4f e(r2)

Total

13544.0341

1348 . graph twoway scatter attend pct_black if year==2013 [wei= total], ms(oh) msize(small) || lfit attend pc
> btitle(CPS 2013) note(rsq=`r2')
(analytic weights assumed)

- 1349 . graph save attend_black13.gph, replace
 (file attend_black13.gph saved)
- 1350 .
- 1351 . reg isat_meet_exceed pct_blackhisp if year==2013 [wei= total]
 (analytic weights assumed)
 (sum of wgt is 2.6944e+05)

Source	SS	df	MS	Number o		=	471
Model Residual	59703.6495 55473.3649	1 469	59703.6499 118.280090	R-squared Adj R-squared		= = =	504.76 0.0000 0.5184 0.5173
Total	115177.014	470	245.05747	-	Root MSE		10.876
isat_meet_e~d	Coef.	Std. Err.	t I	P> t	[95% Co:	nf. Ir	nterval]
pct_blackhisp _cons	4943941 97.87187	.0220054 1.918958	-22.47 51.00	0.000	537 94.1		4511527 101.6427

1352 . local r2: display %5.4f e(r2)

- 1353 . graph twoway scatter isat_meet_exceed pct_blackhisp if year==2013 [wei= total], ms(oh) msize(small) ||
 > tle(% Black or Hispanic & ISAT Proficiency) subtitle(CPS 2013) note(rsq=`r2')
 (analytic weights assumed)
 (analytic weights assumed)
- 1354 . graph save profic_blackhisp13.gph, replace
 (file profic_blackhisp13.gph saved)

1355 .

1356 . reg isat_meet_exceed pct_black if year==2013 [wei= total]
 (analytic weights assumed)
 (sum of wgt is 2.6944e+05)

Source	SS	df	MS	Number	of obs	=	471
Model Residual	31158.2049 84018.8095	1 469	31158.204 179.14458	9 Prob 3 R-sq	469) > F uared R-squared	=	= 0.0000 = 0.2705
Total	115177.014	470	245.05747	5	MSE		= 13.384
isat_meet_~d	Coef.	Std. Err.	t P	> t	[95% Con:	f. 1	[nterval]
pct_black _cons	197959 63.39636	.0150104 .820726	-13.19 77.24	0.000	2274! 61.78		1684631 65.00911

1357 . local r2: display %5.4f e(r2)

1358 . graph twoway scatter isat_meet_exceed pct_black if year==2013 [wei= total], ms(oh) msize(small) || lfit
> ack & ISAT Proficiency) subtitle(CPS 2013) note(rsq=`r2')
(analytic weights assumed)

- 1359 . graph save profic_black13.gph, replace
 (file profic_black13.gph saved)
- 1360 .
- 1361 . reg va_read pct_blackhisp if year==2013 [wei= total]
 (analytic weights assumed)
 (sum of wgt is 2.6747e+05)

Source	SS	df	MS	Number of	obs =	465
Model Residual	7.71567612 326.743766	1 463	7.71567612	R-square	r = ed =	= 0.0010 = 0.0231
Total	334.459442	464	.720817762	- Adj R-so Root MSI	-	
va_read	Coef.	Std. Err.	t I	> t [9	95% Conf.	Interval]
pct_blackhisp _cons	0056449 .564607	.0017072 .1488158	-3.31 3.79	0.001 0.000	0089997 .272169	

1362 . local r2: display %5.4f e(r2)

- 1363 . graph twoway scatter va_read pct_blackhisp if year==2013 [wei= total], ms(oh) msize(small) || lfit va_r > panic & VA Reading) subtitle(CPS 2013) note(rsq=`r2') (analytic weights assumed) (analytic weights assumed)
- 1364 . graph save va_read_blackhisp13.gph, replace
 (file va_read_blackhisp13.gph saved)

1365 .

1366 . reg va_read pct_black if year==2013 [wei= total]
 (analytic weights assumed)
 (sum of wgt is 2.6747e+05)

Source	SS	df	MS	Number	of obs =	=	465
Model Residual	1.07209833 333.387343	1 463	1.0720983 .72005905	7 R-sq	/	= = =	1.49 0.2230 0.0032 0.0011
Total	334.459442	464	.720817762	-	-	=	.84856
va_read	Coef.	Std. Err.	t P:	> t	[95% Conf.	. Int	erval]
pct_black _cons	0011683 .1318558	.0009574 .0523643	-1.22 2.52	0.223 0.012	003049		.0007132 .234757

1367 . local r2: display %5.4f e(r2)

1368 . graph twoway scatter va_read pct_black if year==2013 [wei= total], ms(oh) msize(small) || lfit va_read ;
> subtitle(CPS 2013) note(rsq=`r2')
(analytic weights assumed)

- 1369 . graph save va_read_black13.gph, replace
 (file va_read_black13.gph saved)
- 1370 .
- 1371 . reg va_math pct_blackhisp if year==2013 [wei= total]
 (analytic weights assumed)
 (sum of wgt is 2.6747e+05)

Source	SS	df	MS	Number	of obs	=	465
Model Residual Total	15.8273985 363.014869 378.842268	1 463 464	15.8273985 .784049393 .816470404	F(1, 463) Prob > F R-squared Adj R-square Root MSE		= = = =	20.19 0.0000 0.0418 0.0397 .88547
va_math	Coef.	Std. Err.	t E	?> t	[95% Co	nf. Ir	nterval]
pct_blackhisp _cons	0080849	.0017995 .1568583	-4.49 4.86	0.000	01 .454		0045488 1.071175

1372 . local r2: display %5.4f e(r2)

- 1373 . graph twoway scatter va_math pct_blackhisp if year==2013 [wei= total], ms(oh) msize(small) || lfit va_m
 > panic & VA math) subtitle(CPS 2013) note(rsq=`r2')
 (analytic weights assumed)
 (analytic weights assumed)
- 1374 . graph save va_math_blackhisp13.gph, replace
 (file va_math_blackhisp13.gph saved)

1375 .

1376 . reg va_math pct_black if year==2013 [wei= total]
 (analytic weights assumed)
 (sum of wgt is 2.6747e+05)

Source	SS	df	MS	Number of obs	=	465
Model Residual	9.94056106 368.901707	1 463	9.94056106 .796763945			= 0.0005 = 0.0262
Total	378.842268	464	.816470404	5 1	=	
va_math	Coef.	Std. Err.	t P>	> t [95% Con	ıf. I	Interval]
pct_black _cons	0035574 .2111112	.0010071 .0550828	-3.53 3.83	0.0000055 0.000 .102		0015783 .3193545

1377 . local r2: display %5.4f e(r2)

1378 . graph twoway scatter va_math pct_black if year==2013 [wei= total], ms(oh) msize(small) || lfit va_math ;
> title(CPS 2013) note(rsq=`r2')
(analytic weights assumed)

- 1379 . graph save va_math_black13.gph, replace
 (file va_math_black13.gph saved)
- 1380 .
- 1381 . reg attend pct_blackhisp if year==2009 [wei= total]
 (analytic weights assumed)
 (sum of wgt is 3.9839e+05)

Source	SS	df	MS	Number of	0.0.0	=	615
Model Residual	1767.60303 36890.1521	1 613	1767.60303 60.1796934	1 R-squar	F	= = =	29.37 0.0000 0.0457 0.0442
Total	38657.7551	614	62.9605132	Adj R-squared Root MSE		=	7.7576
attend	Coef.	Std. Err.	t I	?> t [95% Con	f. Iı	nterval]
pct_blackhisp _cons	0839085 98.25103	.0154824 1.387799	-5.42 70.80	0.000 0.000	1143 95.52		0535035 100.9764

CTU Thursday February 9 09:43:09 2017 Page 63 1382 . local r2: display %5.4f e(r2) 1383 . graph twoway scatter attend pct_blackhisp if year==2009 [wei= total], ms(oh) msize(small) || lfit atten > nic & Attendance) subtitle(CPS 2009) note(rsq=`r2') (analytic weights assumed) 1384 . graph save attend_blackhisp09.gph, replace (file attend_blackhisp09.gph saved) 1385 . 1386 . reg attend pct_black if year==2009 [wei= total] (analytic weights assumed) (sum of wgt is 3.9839e+05) df Number of obs 615 Source SS MS = 68.45 F(1, 613) = Model 3882.97979 1 3882.97979 Prob > F 0.0000 =

R-squared

Root MSE

Adj R-squared =

0.1004

0.0990

7.5319

-.0458104

94.55782

=

=

[95% Conf. Interval]

-.0743275

92.78928

613 56.7288341

614 62.9605132

-8.27

_cons	93.67355	.4502773	208.04

34774.7753

38657.7551

-.060069

Coef. Std. Err.

.0072605

1387 . local r2: display %5.4f e(r2)

Residual

Total

attend

pct_black cons

1388 . graph twoway scatter attend pct_black if year==2009 [wei= total], ms(oh) msize(small) || lfit attend pc > btitle(CPS 2009) note(rsg=`r2') (analytic weights assumed) (analytic weights assumed)

t P>|t|

0.000

0.000

- 1389 . graph save attend_black09.gph, replace (file attend_black09.gph saved)
- 1390 .
- 1391 . reg isat_meet_exceed pct_blackhisp if year==2009 [wei= total] (analytic weights assumed) (sum of wgt is 2.8629e+05)

Source	SS	df	MS	Number c		=	495
Model Residual	37244.755 56819.2917	1 493	37244.759 115.252113	1102 1		= = =	323.16 0.0000 0.3960 0.3947
Total	94064.0468	494	190.4130	5	Adj R-squared Root MSE		10.736
isat_meet_e~d	Coef.	Std. Err.	t I	?> t	[95% Co:	nf. Ir	nterval]
pct_blackhisp _cons	4112312 106.2527	.0228759 2.055904	-17.98 51.68	0.000	456 102.2		3662849 110.2921

1392 . local r2: display %5.4f e(r2)

1393 . graph twoway scatter isat_meet_exceed pct_blackhisp if year==2009 [wei= total], ms(oh) msize(small) ||
> tle(% Black or Hispanic & ISAT Proficiency) subtitle(CPS 2009) note(rsq=`r2')
(analytic weights assumed)

1395 .

1396 . reg isat_meet_exceed pct_black if year==2009 [wei= total]
 (analytic weights assumed)
 (sum of wgt is 2.8629e+05)

Source	SS	df	MS	Number of obs	=	495
Model Residual	38178.0198 55886.027	1 493	38178.0198 113.359083		=	= 0.0000 = 0.4059
Total	94064.0468	494	190.4130			= 10.647
isat_meet_~d	Coef.	Std. Err.	t P:	> t [95% Con:	f. 1	[nterval]
pct_black _cons	2042294 79.27305	.0111286 .683118	-18.35 116.05	0.00022609 0.000 77.930		1823641 80.61523

1397 . local r2: display %5.4f e(r2)

1398 . graph twoway scatter isat_meet_exceed pct_black if year==2009 [wei= total], ms(oh) msize(small) || lfit
> ack & ISAT Proficiency) subtitle(CPS 2009) note(rsq=`r2')
(analytic weights assumed)

- 1399 . graph save profic_black09.gph, replace
 (file profic_black09.gph saved)
- 1400 .
- 1401 . reg va_read pct_blackhisp if year==2009 [wei= total]
 (analytic weights assumed)
 (sum of wgt is 2.8328e+05)

Source	SS	df	MS	Number o		=	486
Model Residual	222.938384 1680.33758	1 484	222.938384 3.47177186	R-squa	F	= = =	64.21 0.0000 0.1171 0.1153
Total	1903.27597	485	3.92428034	-	-	=	1.8633
va_read	Coef.	Std. Err.	t I	?> t	[95% Cor	nf. Ir	nterval]
pct_blackhisp _cons	0319777 2.864485	.0039905 .3583717	-8.01 7.99	0.000 0.000	0398 2.160		0241368 3.568642

^{1394 .} graph save profic_blackhisp09.gph, replace
 (file profic_blackhisp09.gph saved)

CTU Thursday February 9 09:43:09 2017 Page 65 1402 . local r2: display %5.4f e(r2) 1403 . graph twoway scatter va_read pct_blackhisp if year==2009 [wei= total], ms(oh) msize(small) || lfit va_r > panic & VA Reading) subtitle(CPS 2009) note(rsq=`r2') (analytic weights assumed) (analytic

^{1406 .} reg va_read pct_black if year==2009 [wei= total]
 (analytic weights assumed)
 (sum of wgt is 2.8328e+05)

Source	SS	df	MS	Number of ob	s =	486
Model Residual	473.770732 1429.50523	1 484	473.77073 2.9535232			= 160.41 = 0.0000 = 0.2489 = 0.2474
Total	1903.27597	485	3.9242803	5 1	Leu	= 1.7186
va_read	Coef.	Std. Err.	t P	> t [95%	Conf.	Interval]
pct_black _cons	0229482 1.076566	.0018119 .1111163	-12.67 9.69		265083 582358	019388 1.294895

1407 . local r2: display %5.4f e(r2)

1408 . graph twoway scatter va_read pct_black if year==2009 [wei= total], ms(oh) msize(small) || lfit va_read ;
> subtitle(CPS 2009) note(rsq=`r2')
(analytic weights assumed)

- 1409 . graph save va_read_black09.gph, replace
 (file va_read_black09.gph saved)
- 1410 .
- 1411 . reg va_math pct_blackhisp if year==2009 [wei= total]
 (analytic weights assumed)
 (sum of wgt is 2.8328e+05)

Source	SS	df	MS	Number of	obs =	=	486
Model Residual Total	274.540066 2789.19228 3063.73235	1 484 485	274.540066 5.76279397 6.31697392	R-squar Adj R-s	F red quared	= = = =	47.64 0.0000 0.0896 0.0877 2.4006
va_math	Coef.	Std. Err.	t P	?> t [95% Coni	E. In	nterval]
pct_blackhisp _cons	0354861 3.16067	.0051413 .4617157	-6.90 6.85	0.000 0.000	04558		0253841 4.067885

1412 . local r2: display %5.4f e(r2)

1413 . graph twoway scatter va_math pct_blackhisp if year==2009 [wei= total], ms(oh) msize(small) || lfit va_m
> panic & VA math) subtitle(CPS 2009) note(rsq=`r2')
(analytic weights assumed)

1415 .

1416 . reg va_math pct_black if year==2009 [wei= total]
 (analytic weights assumed)
 (sum of wgt is 2.8328e+05)

Source	SS	df	MS		of obs	=	486
Model Residual	151.490953 2912.2414	1 484	151.490953 6.01702768	B Prob B R-sq	uared	=	0.0000
Total	3063.73235	485	6.31697392	-	R-squared MSE	=	0.0475
va_math	Coef.	Std. Err.	t P>	• t	[95% Conf	. I	nterval]
pct_black _cons	0129765 .6308017	.0025862 .1585983	-5.02 3.98	0.000	0180 .31917		007895 .9424278

1417 . local r2: display %5.4f e(r2)

- (analytic weights assumed) (analytic weights assumed) (analytic weights assumed) (analytic weights assumed)
- 1419 . graph save va_math_black09.gph, replace
 (file va_math_black09.gph saved)

1420 .

1421 . ************

1422 .

- 1423 . pcorr isat_math i.year pct_black if hs==0 $\$
- (obs=2505)

Partial and semipartial correlations of $isat_math$ with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2009b.year 2010.year 2011.year 2012.year 2013.year pct_black	(dropped) 0.0581 0.1240 0.1423 -0.4789 -0.5362	0.0411 0.0882 0.1015 -0.3850 -0.4483	0.003 0.015 0.020 0.229 0.287	4 0.00 3 0.01 4 0.14	78 0.0000 03 0.0000 83 0.0000

^{1414 .} graph save va_math_blackhisp09.gph, replace
 (file va_math_blackhisp09.gph saved)

1424 . pcorr isat_math i.year pct_blackhisp if hs==0
 (obs=2505)

Partial and semipartial correlations of isat_math with

	Partial	Semipartial	Partial	Semipartial	Significance
Variable	Corr.	Corr.	Corr.^2	Corr.^2	Value
2009b.year	(dropped)				
2010.year	0.0582	0.0404	0.003	4 0.00	16 0.0036
2011.year	0.1269	0.0887	0.016	1 0.00	79 0.0000
2012.year	0.1445	0.1012	0.020	9 0.01	02 0.0000
2013.year	-0.4820	-0.3814	0.232	4 0.14	54 0.0000
pct_black~p	-0.5592	-0.4676	0.312	7 0.21	86 0.0000

1425 . pcorr isat_math i.year pct_frl if hs==0
 (obs=2010)

Partial and semipartial correlations of isat_math with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_frl	(dropped) 0.0673 0.0941 -0.5671 -0.5512	0.0455 0.0637 -0.4641 -0.4453	0.004 0.008 0.321 0.303	9 0.00 6 0.21	41 0.0000 54 0.0000

1426 . pcorr isat_math i.year pct_ell if hs==0
 (obs=1702)

Partial and semipartial correlations of isat_math with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_ell	(dropped) 0.0402 0.0335 -0.5254 0.2138	0.0305 0.0254 -0.4676 0.1657	0.001 0.001 0.276 0.045	1 0.00 1 0.21	06 0.1671 86 0.0000

1427 . pcorr isat_math i.year pct_sped if hs==0
 (obs=2010)

Partial and semipartial correlations of isat_math with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_sped	(dropped) 0.0768 0.1010 -0.5007 -0.3339	0.0587 0.0773 -0.4405 -0.2697	0.0059 0.010 0.250 0.111	2 0.00 7 0.19	60 0.0000 41 0.0000

Source	SS	df	MS		of obs =		1,702
Model	462364.635	8	57795.5793	. ,	1693) > F	=	584.76 0.0000
Residual	167330.547	1,693	98.8367084	0.0	uared	=	0.7343
				Adj	R-squared	=	0.7330
Total	629695.182	1,701	370.191171	. Root	MSE	=	9.9417
isat_math	Coef.	Std. Err.	t P>	t	[95% Conf.	Int	erval]
pct_black	2160025	.0201138	-10.74	0.000	25545	3	176552
pct_hisp	0756097	.0201713	-3.75	0.000	11517	3	0360465
pct_frl	-24.28891	2.160712	-11.24	0.000	-28.5268	6	-20.05096
pct_ell	-2.577432	2.973941	-0.87	0.386	-8.4104	2	3.255556
pct_sped	-54.58066	2.845486	-19.18	0.000	-60.161	7	-48.99962
year							
2011	1.559203	.745779	2.09	0.037	.096457	6	3.021949
2012	3.661038	.6950387	5.27	0.000	2.29781	3	5.024264
2013	-24.94459	.7093967	-35.16	0.000	-26.3359	8	-23.55321
_cons	117.0101	1.18942	98.38	0.000	114.677	2	119.3429

1428 . reg isat_math pct_black pct_hisp pct_frl pct_ell pct_sped i.year if hs==0

1429 . pcorr isat_math i.year va_math if hs==0
 (obs=2952)

Partial and semipartial correlations of isat_math with

Variable	Partial Corr.	Semipartial Corr.	Partial Corr.^2	Semipartial Corr.^2	Significance Value
2008b.year	(dropped)				
2009.year	0.0449	0.0359	0.0020	0.00	13 0.0148
2010.year	0.0889	0.0712	0.0079	9 0.00	51 0.0000
2011.year	0.1463	0.1180	0.0214	4 0.01	39 0.0000
2012.year	0.1728	0.1400	0.0299	9 0.01	96 0.0000
2013.year	-0.3612	-0.3090	0.1304	4 0.09	55 0.0000
va_math	0.3651	0.3130	0.1333	3 0.09	79 0.0000

1430 .

1431 . pcorr isat_math_trend i.year pct_black if hs==0
 (obs=2424)

Partial and semipartial correlations of isat_math_trend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2009b.year 2010.year 2011.year 2012.year 2013.year pct_black	(dropped) 0.0003 0.0481 -0.0512 0.0106 0.1996	0.0003 0.0469 -0.0500 0.0104 0.1986	0.000 0.002 0.002 0.000 0.000	3 0.00 6 0.00 1 0.00	22 0.0180 25 0.0118 01 0.6016

1432 . pcorr isat_math_trend i.year pct_blackhisp if hs==0
 (obs=2424)

Partial and semipartial correlations of isat_math_trend with

	Partial	Semipartial	Partial	Semipartial	Significance
Variable	Corr.	Corr.	Corr.^2	Corr.^2	Value
2009b.year	(dropped)				
2010.year	0.0002	0.0002	0.0000	0.00	0.9915
2011.year	0.0472	0.0464	0.0022	2 0.00	22 0.0203
2012.year	-0.0510	-0.0502	0.0026	5 0.002	25 0.0121
2013.year	0.0074	0.0073	0.0001	L 0.00	0.7168
pct_black~p	0.1530	0.1522	0.0234	1 0.02	32 0.0000

1433 . pcorr isat_math_trend i.year pct_frl if hs==0
 (obs=1944)

Partial and semipartial correlations of isat_math_trend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_frl	(dropped) 0.0548 -0.0546 0.0133 0.1704	0.0538 -0.0536 0.0130 0.1694	0.003 0.003 0.000 0.029	0 0.00 2 0.00	290.0161020.5587

1434 . pcorr isat_math_trend i.year pct_ell if hs==0
 (obs=1647)

Partial and semipartial correlations of isat_math_trend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_ell	(dropped) 0.0206 -0.0215 0.0436 -0.0717	0.0205 -0.0214 0.0434 -0.0715	0.000 0.000 0.001 0.005	5 0.00 9 0.00	05 0.3829 19 0.0771

1435 . pcorr isat_math_trend i.year pct_sped if hs==0
 (obs=1944)

Partial and semipartial correlations of isat_math_trend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_sped	(dropped) 0.0504 -0.0573 0.0013 -0.0532	0.0501 -0.0570 0.0013 -0.0529	0.002 0.003 0.000 0.002	3 0.00 0 0.00	32 0.0116 00 0.9527

Source	SS	df	MS		of obs =		1,647
Model	2588.40341	8	323.550427	. ,	1638) > F	=	8.88 0.0000
Residual	59712.5013	1,638	36.4545185	-	uared	=	0.0415
Total	62300.9047	1,646	37.8498813	5	R-squared MSE	=	0.0369 6.0378
isat_math_~d	Coef.	Std. Err.	t P>	t	[95% Conf.	In	terval]
pct_black	.0017498	.0123933	0.14	0.888	022558	6	.0260581
pct_hisp	0151648	.0124679	-1.22	0.224	039619	6	.0092899
pct_frl	4.79702	1.335841	3.59	0.000	2.17688	3	7.417156
pct_ell	9114203	1.835635	-0.50	0.620	-4.5118	6	2.689019
pct_sped	-4.03806	1.778308	-2.27	0.023	-7.52605	8	5500629
year							
2011	.5185232	.4622184	1.12	0.262	38807	8	1.425124
2012	5823651	.4294344	-1.36	0.175	-1.42466	4	.2599333
2013	.6788008	.4373736	1.55	0.121	179069	6	1.536671
_cons	1.069812	.7372882	1.45	0.147	376315	1	2.515939

1436 . reg isat_math_trend pct_black pct_hisp pct_frl pct_ell pct_sped i.year if hs==0

1437 . pcorr isat_math_trend i.year va_math if hs==0 (obs=2877)

Partial and semipartial correlations of isat_math_trend with

Variable	Partial Corr.	Semipartial Corr.	Partial Corr.^2	Semipartial Corr.^2	Significance Value
2008b.year	(dropped)				
2009.year	-0.2395	-0.2189	0.057	3 0.04	79 0.0000
2010.year	-0.2442	-0.2235	0.0590	5 0.04	99 0.0000
2011.year	-0.2083	-0.1891	0.0434	4 0.03	57 0.0000
2012.year	-0.2895	-0.2685	0.0838	B 0.07	21 0.0000
2013.year	-0.2468	-0.2260	0.0609	9 0.05	11 0.0000
va_math	0.3723	0.3561	0.1380	5 0.12	68 0.0000

1438 .

Partial and semipartial correlations of isat_read with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2009b.year 2010.year 2011.year 2012.year 2013.year pct_black	(dropped) -0.0004 0.0914 0.1002 -0.3912 -0.5270	-0.0003 0.0699 0.0766 -0.3235 -0.4720	0.000 0.008 0.010 0.153 0.277	4 0.00 0 0.00 0 0.10	49 0.0000 59 0.0000 47 0.0000

^{1439 .} pcorr isat_read i.year pct_black if hs==0
 (obs=2505)

1440 . pcorr isat_read i.year pct_blackhisp if hs==0 (obs=2505)

Partial and semipartial correlations of isat_read with

	Partial	Semipartial	Partial	Semipartial	Significance
Variable	Corr.	Corr.	Corr.^2	Corr.^2	Value
2009b.year	(dropped)				
2010.year	-0.0018	-0.0013	0.000	0.00	00 0.9273
2011.year	0.0993	0.0695	0.009	9 0.00	48 0.0000
2012.year	0.1072	0.0751	0.011	5 0.00	56 0.0000
2013.year	-0.4197	-0.3223	0.176	2 0.10	39 0.0000
pct_black~p	-0.6281	-0.5626	0.394	6 0.31	65 0.0000

1441 . pcorr isat_read i.year pct_frl if hs==0 (obs=2010)

Partial and semipartial correlations of isat_read with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_frl	(dropped) 0.1016 0.1188 -0.4749 -0.6462	0.0684 0.0802 -0.3615 -0.5672	0.010 0.014 0.225 0.417	1 0.00 5 0.13	64 0.0000 06 0.0000

1442 . pcorr isat_read i.year pct_ell if hs==0 (obs=1702)

Partial and semipartial correlations of isat_read with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_ell	(dropped) 0.0827 0.0478 -0.4041 0.1578	0.0694 0.0400 -0.3693 0.1336	0.006 0.002 0.163 0.024	3 0.00 3 0.13	16 0.0488 64 0.0000

1443 . pcorr isat_read i.year pct_sped if hs==0 (obs=2010)

Partial and semipartial correlations of isat_read with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_sped	(dropped) 0.1001 0.1137 -0.3661 -0.2916	0.0844 0.0961 -0.3303 -0.2560	0.010 0.012 0.134 0.085	9 0.00 0 0.10	92 0.0000 91 0.0000

	Source	SS	df	MS	Number o		1,702 = 572.80
_	Model	394143.981	8	49267.9977	0.0	F	= 0.0000
	Residual	145619.39	1,693	86.0126345	-		= 0.7302
_	Total	539763.372	1,701	317.321206	5	o quar ca	= 0.7289 = 9.2743
-	isat_read	Coef.	Std. Err.	t P>	t [95% Conf. 1	Interval]
	pct_black	2213106	.0187636	-11.79	0.000	2581129	1845083
	pct_hisp	0895118	.0188172	-4.76	0.000	1264192	0526043
	pct_frl	-30.6772	2.015667	-15.22	0.000	-34.63066	-26.72374
	pct_ell	-3.827421	2.774306	-1.38	0.168	-9.268851	1.614009
	pct_sped	-49.20531	2.654473	-18.54	0.000	-54.41171	-43.99892
	year						
	2011	3.356948	.6957163	4.83	0.000	1.992394	4.721502
	2012	4.335375	.6483821	6.69	0.000	3.06366	5.607089
	2013	-18.07012	.6617762	-27.31	0.000	-19.3681	-16.77213
	_cons	114.5526	1.109577	103.24	0.000	112.3763	116.7289

1444 . reg isat_read pct_black pct_hisp pct_frl pct_ell pct_sped i.year if hs==0

1445 . pcorr isat_read i.year va_read if hs==0 (obs=2952)

Partial and semipartial correlations of isat_read with

Variable	Partial Corr.	Semipartial Corr.	Partial Corr.^2	Semipartial Corr.^2	Significance Value
2008b.year	(dropped)				
2009.year	0.0314	0.0256	0.0010	0.00	07 0.0883
2010.year	0.0131	0.0106	0.0002	2 0.00	01 0.4780
2011.year	0.1012	0.0827	0.0102	2 0.00	68 0.0000
2012.year	0.1163	0.0952	0.0135	5 0.00	91 0.0000
2013.year	-0.3245	-0.2791	0.1053	3 0.07	79 0.0000
va_read	0.4410	0.3998	0.1945	5 0.15	98 0.0000

1446 .

1447 . pcorr isat_read_trend i.year pct_black if hs==0 (obs=2424)

Partial and semipartial correlations of isat_read_trend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2009b.year 2010.year 2011.year 2012.year 2013.year pct_black	(dropped) -0.1155 -0.0053 -0.0840 -0.0453 0.0417	-0.1150 -0.0053 -0.0833 -0.0448 0.0413	0.013 0.000 0.007 0.002 0.001	0 0.00 0 0.00 0 0.00	00 0.7930 69 0.0000 20 0.0260

1448 . pcorr isat_read_trend i.year pct_blackhisp if hs==0 (obs=2424)

Partial and semipartial correlations of isat_read_trend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2009b.year 2010.year 2011.year 2012.year 2013.year pct_black~p	(dropped) -0.1158 -0.0050 -0.0835 -0.0443 0.0792	-0.1150 -0.0049 -0.0827 -0.0437 0.0784	0.0134 0.0000 0.0070 0.0020 0.0023	0.000 0.000 0.001	00 0.8053 58 0.0000 L9 0.0294

1449 . pcorr isat_read_trend i.year pct_frl if hs==0
 (obs=1944)

Partial and semipartial correlations of isat_read_trend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_frl	(dropped) 0.1246 0.0382 0.0812 0.1036	0.1238 0.0377 0.0804 0.1027	0.015 0.001 0.006 0.010	5 0.00 6 0.00	140.0929650.0003

1450 . pcorr isat_read_trend i.year pct_ell if hs==0
 (obs=1647)

Partial and semipartial correlations of isat_read_trend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_ell	(dropped) 0.1192 0.0608 0.0994 0.0481	0.1189 0.0604 0.0989 0.0476	0.014 0.003 0.009 0.002	7 0.00 9 0.00	36 0.0136 98 0.0001

1451 . pcorr isat_read_trend i.year pct_sped if hs==0
 (obs=1944)

Partial and semipartial correlations of isat_read_trend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_sped	(dropped) 0.1219 0.0360 0.0739 -0.0367	0.1217 0.0357 0.0734 -0.0364	0.014 0.001 0.005 0.001	3 0.00 5 0.00	130.1130540.0011

Source	SS	df	MS	Number o		1,647
Model Residual	1425.2958 45883.1975	8 1,638	178.161974 28.0117201	0.0	> F	= 6.36 = 0.0000 = 0.0301
Total	47308.4933	1,646	28.7414905	-	5 gaar ca	= 0.0254 = 5.2926
	Coef.	Std. Err.	t P>	t [[95% Conf.	Interval]
pct_black pct_hisp pct_frl pct_ell pct_sped	0087848 0136089 3.20843 1.453346 -2.826086	.0108638 .0109292 1.170979 1.609091 1.558839	-1.25 2.74 0.90	0.419 0.213 0.006 0.367 0.070	0300931 0350456 .9116569 -1.702747 -5.883613	.0078277 5.505204 4.609438
year 2011 2012 2013	2.060922 .864118 1.537048	.4051738 .3764359 .3833953	2.30	0.000 0.022 0.000	1.266209 .1257715 .7850512	1.602464
_cons	.5118274	.6462961	0.79	0.429	7558264	1.779481

1452 . reg isat_read_trend pct_black pct_hisp pct_frl pct_ell pct_sped i.year if hs==0

1453 . pcorr isat_read_trend i.year va_read if hs==0 (obs=2877)

Partial and semipartial correlations of isat_read_trend with

Variable	Partial Corr.	Semipartial Corr.	Partial Corr.^2	Semipartial Corr.^2	Significance Value
2008b.year	(dropped)				
2009.year	-0.2806	-0.2516	0.0787	0.06	33 0.0000
2010.year	-0.3893	-0.3636	0.1515	5 0.13	22 0.0000
2011.year	-0.2971	-0.2677	0.0882	0.07	17 0.0000
2012.year	-0.3595	-0.3315	0.1292	0.10	99 0.0000
2013.year	-0.3354	-0.3063	0.1125	5 0.09	38 0.0000
va_read	0.3270	0.2978	0.1070	0.08	87 0.0000

1454 .

1455 . pcorr isat_science i.year pct_black if hs==0
 (obs=2455)

Partial and semipartial correlations of isat_science with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2009b.year 2010.year 2011.year 2012.year 2013.year pct_black	(dropped) 0.0586 0.1512 0.1683 0.2373 -0.5681	0.0468 0.1220 0.1362 0.1949 -0.5508	0.003 0.022 0.028 0.056 0.322	9 0.01 3 0.01 3 0.03	49 0.0000 86 0.0000 80 0.0000

1456 . pcorr isat_science i.year pct_blackhisp if hs==0
 (obs=2455)

Partial and semipartial correlations of isat_science with

	Partial	Semipartial	Partial	Semipartial	Significance
Variable	Corr.	Corr.	Corr.^2	Corr.^2	Value
2009b.year	(dropped)				
2010.year	0.0590	0.0469	0.003	5 0.00	22 0.0035
2011.year	0.1536	0.1233	0.023	6 0.01	52 0.0000
2012.year	0.1699	0.1367	0.0289	9 0.01	87 0.0000
2013.year	0.2447	0.2002	0.0599	9 0.04	01 0.0000
pct_black~p	-0.5751	-0.5575	0.330	7 0.31	0.0000

1457 . pcorr isat_science i.year pct_frl if hs==0
 (obs=1968)

Partial and semipartial correlations of isat_science with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_frl	(dropped) 0.1000 0.1247 0.2043 -0.5575	0.0817 0.1021 0.1696 -0.5457	0.010 0.015 0.041 0.310	6 0.01 7 0.02	04 0.0000 88 0.0000

1458 . pcorr isat_science i.year pct_ell if hs==0
 (obs=1667)

Partial and semipartial correlations of isat_science with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_ell	(dropped) 0.0630 0.0407 0.1310 0.2356	0.0607 0.0392 0.1272 0.2334	0.004 0.001 0.017 0.055	7 0.00 2 0.01	15 0.0967 62 0.0000

1459 . pcorr isat_science i.year pct_sped if hs==0
 (obs=1968)

Partial and semipartial correlations of isat_science with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_sped	(dropped) 0.1027 0.1246 0.2093 -0.2208	0.0986 0.1199 0.2043 -0.2161	0.010 0.015 0.043 0.048	5 0.01 8 0.04	44 0.0000 17 0.0000

Source	SS	df	MS		of obs =		1,667
Model Residual	227910.953 192285.416	8 1,658	28488.8691 115.974316	. Prob	1658) > F guared	= = =	245.65 0.0000 0.5424
	1911031110	2,000	11010/1010	-	R-squared	=	0.5402
Total	420196.368	1,666	252.218708	Root	MSE	=	10.769
isat_science	Coef.	Std. Err.	t P>	· t	[95% Conf.	In	terval]
pct_black	2303934	.0221291	-10.41	0.000	273797	3	1869895
pct_hisp	072491	.0219659	-3.30	0.001	115574	9	0294071
pct_frl	-26.53089	2.379155	-11.15	0.000	-31.1973	6	-21.86443
pct_ell	-1.62884	3.335237	-0.49	0.625	-8.1705	6	4.91288
pct_sped	-44.64456	3.526151	-12.66	0.000	-51.5607	4	-37.72839
year							
2011	2.733602	.8183752	3.34	0.001	1.12844	4	4.338759
2012	4.323221	.7630679	5.67	0.000	2.82654	3	5.819899
2013	7.20173	.7774584	9.26	0.000	5.67682	6	8.726634
_cons	109.5573	1.311934	83.51	0.000	106.98	4	112.1305

1460 . reg isat_science pct_black pct_hisp pct_frl pct_ell pct_sped i.year if hs==0

1461 .

1462 . pcorr isat_science_trend i.year pct_black if hs==0

(obs=2376)

Partial and semipartial correlations of isat_science_trend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2009b.year 2010.year 2011.year 2012.year 2013.year pct_black	(dropped) 0.1046 0.2021 0.1177 0.1256 0.1420	0.1020 0.2001 0.1150 0.1228 0.1391	0.010 0.040 0.013 0.015 0.020	8 0.04 9 0.01 8 0.01	01 0.0000 32 0.0000 51 0.0000

1463 . pcorr isat_science_trend i.year pct_blackhisp if hs==0
 (obs=2376)

Partial and semipartial correlations of isat_science_trend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2009b.year 2010.year 2011.year 2012.year 2013.year pct_black~p	(dropped) 0.1043 0.2011 0.1171 0.1234 0.1209	0.1020 0.1997 0.1147 0.1210 0.1185	0.0109 0.0409 0.013 0.0152 0.014	5 0.03 7 0.01 2 0.01	99 0.0000 31 0.0000 46 0.0000

1464 . pcorr isat_science_trend i.year pct_frl if hs==0
 (obs=1904)

Partial and semipartial correlations of isat_science_trend with

	Partial	Semipartial	Partial	Semipartial	Significance
Variable	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year	(dropped)				
2011.year	0.1160	0.1142	0.013	5 0.01	30 0.0000
2012.year	0.0167	0.0163	0.000	3 0.00	03 0.4666
2013.year	0.0303	0.0297	0.000	9 0.00	09 0.1866
pct_frl	0.1691	0.1679	0.028	6 0.02	82 0.0000

1465 . pcorr isat_science_trend i.year pct_ell if hs==0
 (obs=1612)

Partial and semipartial correlations of isat_science_trend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_ell	(dropped) 0.0738 0.0363 0.0453 -0.0714	0.0737 0.0361 0.0451 -0.0712	0.005 0.001 0.002 0.005	3 0.00 1 0.00	130.1458200.0692

1466 . pcorr isat_science_trend i.year pct_sped if hs==0
 (obs=1904)

Partial and semipartial correlations of isat_science_trend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_sped	(dropped) 0.1107 0.0128 0.0189 -0.0248	0.1105 0.0127 0.0187 -0.0246	0.012 0.000 0.000 0.000	2 0.00 4 0.00	02 0.5785 04 0.4110

1467 . reg isat_science_trend pct_black pct_hisp pct_frl pct_ell pct_sped i.year if hs==0

	Source	SS	df	MS	Number of obs	=	1,612
_					F(8, 1603)	=	9.31
	Model	5003.72005	8	625.465006	Prob > F	=	0.0000
	Residual	107748.131	1,603	67.2165509	R-squared	=	0.0444
_					Adj R-squared	=	0.0396
	Total	112751.851	1,611	69.9887344	Root MSE	=	8.1986

isat_scien~d	Coef.	Std. Err.	t :	P> t	[95% Conf. Ir	nterval]
pct_black pct_hisp	.0066805	.0170946	0.39 -0.15	0.696	0268496 0359299	.0402105
pct frl	6.772699	1.843828	3.67	0.000	3.156132	10.38927
pct_ell	-3.899462	2.575628	-1.51	0.130	-8.951415	1.15249
pct_sped	-6.01448	2.820796	-2.13	0.033	-11.54732	4816433
year						
2011	2.109039	.6327873	3.33	0.001	.8678613	3.350216
2012	.681772	.5894553	1.16	0.248	4744121	1.837956
2013	1.074378	.6006848	1.79	0.074	1038326	2.252588
_cons	9386262	1.021791	-0.92	0.358	-2.942814	1.065562

1468 .

```
1469 . pcorr isat_exceeds i.year pct_black if hs==0
  (obs=2508)
```

Partial and semipartial correlations of isat_exceeds with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2009b.year 2010.year 2011.year 2012.year 2013.year pct black	(dropped) 0.0215 0.0755 0.0882 -0.0859 -0.3810	0.0196 0.0690 0.0807 -0.0786 -0.3756	0.000 0.005 0.007 0.007 0.145	7 0.00 8 0.00 4 0.00	48 0.0002 65 0.0000 62 0.0000

1470 . pcorr isat_exceeds i.year pct_blackhisp if hs==0
 (obs=2508)

Partial and semipartial correlations of isat_exceeds with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2009b.year 2010.year 2011.year 2012.year 2013.year pct_black~p	(dropped) 0.0260 0.0939 0.1071 -0.1254 -0.7120	0.0180 0.0653 0.0745 -0.0875 -0.7018	0.000 0.008 0.011 0.015 0.506	8 0.00 5 0.00 7 0.00	43 0.0000 56 0.0000 77 0.0000

1471 . pcorr isat_exceeds i.year pct_frl if hs==0
 (obs=2013)

Partial and semipartial correlations of isat_exceeds with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_frl	(dropped) 0.0682 0.0981 -0.2277 -0.8039	0.0400 0.0576 -0.1368 -0.7907	0.004 0.009 0.051 0.646	6 0.00 8 0.01	33 0.0000 87 0.0000

1472 . pcorr isat_exceeds i.year pct_ell if hs==0
 (obs=1705)

Partial and semipartial correlations of isat_exceeds with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_ell	(dropped) 0.0686 0.0383 -0.1271 -0.0313	0.0671 0.0374 -0.1250 -0.0305	0.004 0.001 0.016 0.016	5 0.00 1 0.01	140.1140560.0000

1473 . pcorr isat_exceeds i.year pct_sped if hs==0 (obs=2013)

Partial and semipartial correlations of isat_exceeds with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_sped	(dropped) 0.0641 0.0808 -0.0921 -0.1749	0.0622 0.0785 -0.0896 -0.1720	0.004 0.006 0.008 0.030	5 0.00 5 0.00	52 0.0003 30 0.0000

1474 . reg isat_exceeds pct_black pct_hisp pct_frl pct_ell pct_sped i.year if hs==0

Source	SS	df	MS	Number of ob - F(8, 1696)		1,705 555.66
Model	244672.299	8	30584.0374		=	
Residual	93348.667	1,696	55.0404876		=	
	55510.007	1,000	55.0101070	- Adj R-squa		
Total	338020.966	1,704	198.369112	• •	=	
IOCAL	538020.900	1,704	190.309112	ROOL MSE	-	/.4109
isat_exceeds	Coef.	Std. Err.	t P>	· t [95%	Conf. I	nterval]
pct_black	1523291	.0149996	-10.16	0.0001	817488	1229095
pct_hisp	1210471	.0150423	-8.05	0.0001	505506	0915436
pct_frl	-41.37022	1.611595	-25.67	0.000 -44	.53114	-38.2093
pct_ell	2.111711	2.213453	0.95	0.340 -2.	229675	6.453097
pct_sped	-25.03098	2.006456	-12.48	0.000 -28	.96637	-21.09559
year						
2011	1.951568	.5562979	3.51	0.000 .8	604651	3.04267
2012	2.868092	.5184201	5.53	0.000 1.	851281	3.884902
2013	-5.128318	.528974	-9.69	0.000 -6.	165828	-4.090807
_cons	65.35111	.8866359	73.71	0.000 63	.61209	67.09012

^{1475 .} pcorr isat_exceeds i.year va_read if hs==0 (obs=2952)

Partial and semipartial correlations of isat_exceeds with

Variable	Partial Corr.	Semipartial Corr.	Partial Corr.^2	Semipartial Corr.^2	Significance Value
2008b.year	(dropped)				
2009.year	0.0354	0.0321	0.001	3 0.00	10 0.0546
2010.year	0.0406	0.0368	0.001	5 0.00	14 0.0276
2011.year	0.0953	0.0868	0.0093	L 0.00	75 0.0000
2012.year	0.1139	0.1040	0.0130	0.01	0.0000
2013.year	-0.0426	-0.0387	0.0018	в 0.00	15 0.0208
va_read	0.3935	0.3881	0.1548	8 0.15	07 0.0000

1476 . pcorr isat_exceeds i.year va_math if hs==0 (obs=2952)

Partial and semipartial correlations of isat_exceeds with

	Partial	Semipartial	Partial	Semipartial	Significance
Variable	Corr.	Corr.	Corr.^2	Corr.^2	Value
2008b.year	(dropped)				
2009.year	0.0123	0.0116	0.000	2 0.00	01 0.5060
2010.year	0.0312	0.0295	0.001	0.00	09 0.0907
2011.year	0.0797	0.0756	0.006	3 0.00	57 0.0000
2012.year	0.0993	0.0944	0.009	9 0.00	89 0.0000
2013.year	-0.0463	-0.0439	0.002	1 0.00	19 0.0119
va_math	0.2835	0.2797	0.080	4 0.07	82 0.0000

1477 .

1478 . pcorr isat_exceeds_trend i.year pct_black if hs==0 (obs=2428)

Partial and semipartial correlations of isat_exceeds_trend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2009b.year 2010.year 2011.year 2012.year 2013.year pct_black	(dropped) -0.0285 0.0747 -0.0037 -0.0016 -0.1230	-0.0282 0.0739 -0.0036 -0.0015 -0.1222	0.000 0.005 0.000 0.000 0.000	6 0.00 0 0.00 0 0.00 0 0.00	55 0.0002 00 0.8565 00 0.9387

1479 . pcorr isat_exceeds_trend i.year pct_blackhisp if hs==0
 (obs=2428)

Partial and semipartial correlations of isat_exceeds_trend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2009b.year 2010.year 2011.year 2012.year 2013.year pct_black~p	(dropped) -0.0292 0.0750 -0.0057 -0.0045 -0.2181	-0.0283 0.0729 -0.0055 -0.0044 -0.2168	0.000 0.005 0.000 0.000 0.000	6 0.00 0 0.00 0 0.00 0 0.00	530.0002000.7793000.8243

1480 . pcorr isat_exceeds_trend i.year pct_frl if hs==0
 (obs=1948)

Partial and semipartial correlations of isat_exceeds_trend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_frl	(dropped) 0.1104 0.0241 0.0216 -0.2033	0.1080 0.0235 0.0210 -0.2019	0.0122 0.0000 0.0009 0.0412	5 0.00	0.2875 04 0.3419

1481 . pcorr isat_exceeds_trend i.year pct_ell if hs==0
 (obs=1651)

Partial and semipartial correlations of isat_exceeds_trend with

	Partial	Semipartial	Partial	Semipartial	Significance
Variable	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year	(dropped)				
2011.year	0.1082	0.1081	0.011	7 0.01	17 0.0000
2012.year	0.0371	0.0368	0.001	4 0.00	14 0.1327
2013.year	0.0418	0.0415	0.001	7 0.00	17 0.0898
pct_ell	0.0357	0.0355	0.001	3 0.00	13 0.1470

1482 . pcorr isat_exceeds_trend i.year pct_sped if hs==0
 (obs=1948)

Partial and semipartial correlations of isat_exceeds_trend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_sped	(dropped) 0.1167 0.0323 0.0349 -0.1503	0.1154 0.0317 0.0343 -0.1492	0.013 0.001 0.001 0.022	0 0.00 2 0.00	100.1541120.1240

1483 . reg isat_exceeds_trend pct_black pct_hisp pct_frl pct_ell pct_sped i.year if hs==0

Source	SS	df	MS	Number of obs	=	1,651
				F(8, 1642)	=	19.50
Model	1959.2109	8	244.901362	Prob > F	=	0.0000
Residual	20622.4541	1,642	12.5593508	R-squared	=	0.0868
				Adj R-squared	=	0.0823
Total	22581.665	1,650	13.6858576	Root MSE	=	3.5439

isat_excee~d	Coef.	Std. Err.	t 1	₽> t	[95% Conf. In	terval]
pct_black pct_hisp	0249232 0181388	.0072676	-3.43 -2.48	0.001	039178 0324815	0106685
pct_frl	-1.45568	.7836348	-1.86	0.063	-2.992709	.0813488
pct_ell	3270181	1.074294	-0.30	0.761	-2.434149	1.780112
pct_sped	-6.310408	.9673552	-6.52	0.000	-8.207788	-4.413028
year						
2011	1.231073	.2709426	4.54	0.000	.6996439	1.762503
2012	.5404909	.2517701	2.15	0.032	.0466666	1.034315
2013	.4870639	.2563822	1.90	0.058	0158067	.9899345
_cons	5.753482	.4322761	13.31	0.000	4.905612	6.601353

1484 . pcorr isat_exceeds_trend i.year va_read if hs==0 (obs=2877)

Partial and semipartial correlations of isat_exceeds_trend with

Variable	Partial Corr.	Semipartial Corr.	Partial Corr.^2	Semipartial Corr.^2	Significance Value
2008b.year	(dropped)				
2009.year	-0.0820	-0.0737	0.0067	0.00!	54 0.0000
2010.year	-0.1200	-0.1083	0.0144	£ 0.01	L7 0.0000
2011.year	-0.0027	-0.0024	0.0000	0.00	0.8836
2012.year	-0.0890	-0.0801	0.0079	0.00	54 0.0000
2013.year	-0.0899	-0.0809	0.0081	L 0.00	55 0.0000
va_read	0.4240	0.4194	0.1797	0.17	59 0.0000

1485 . pcorr isat_exceeds_trend i.year va_math if hs==0 (obs=2877)

Partial and semipartial correlations of isat_exceeds_trend with

Variable	Partial Corr.	Semipartial Corr.	Partial Corr.^2	Semipartial Corr.^2	Significance Value
2008b.year	(dropped)				
2009.year	-0.1067	-0.0971	0.0114	4 0.00	94 0.0000
2010.year	-0.1284	-0.1171	0.0165	5 0.01	37 0.0000
2011.year	-0.0195	-0.0176	0.0004	4 0.00	03 0.2965
2012.year	-0.0996	-0.0905	0.0099	9 0.00	82 0.0000
2013.year	-0.0971	-0.0883	0.0094	4 0.00	78 0.0000
va_math	0.4048	0.4004	0.1639	9 0.16	04 0.0000

1486 .
1487 . pcorr isat_higrade i.year pct_black if hs==0

(obs=2506)

Partial and semipartial correlations of isat_higrade with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2009b.year 2010.year 2011.year 2012.year 2013.year pct_black	(dropped) 0.0622 0.0747 0.0843 -0.0349 -0.3637	0.0576 0.0692 0.0781 -0.0323 -0.3608	0.0039 0.0059 0.0077 0.0012 0.132	5 0.00 L 0.00 2 0.00	48 0.0002 61 0.0000 10 0.0809

1488 . pcorr isat_higrade i.year pct_blackhisp if hs==0 (obs=2506)

Partial and semipartial correlations of isat_higrade with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2009b.year 2010.year 2011.year 2012.year 2013.year pct_black~p	(dropped) 0.0732 0.0867 0.0949 -0.0511 -0.6355	0.0562 0.0666 0.0730 -0.0392 -0.6304	0.005 0.007 0.009 0.002 0.403	5 0.00 0 0.00 6 0.00	44 0.0000 53 0.0000 15 0.0106

1489 . pcorr isat_higrade i.year pct_frl if hs==0 (obs=2011)

Partial and semipartial correlations of isat_higrade with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_frl	(dropped) 0.0002 0.0200 -0.1697 -0.7027	0.0002 0.0141 -0.1217 -0.6976	0.000 0.000 0.028 0.493	4 0.00 8 0.01	02 0.3708 48 0.0000

1490 . pcorr isat_higrade i.year pct_ell if hs==0
 (obs=1703)

Partial and semipartial correlations of isat_higrade with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_ell	(dropped) 0.0196 -0.0100 -0.1192 -0.0039	0.0194 -0.0099 -0.1185 -0.0039	0.000 0.000 0.014 0.000	1 0.00 2 0.01	01 0.6805 40 0.0000

1491 . pcorr isat_higrade i.year pct_sped if hs==0
 (obs=2011)

Partial and semipartial correlations of isat_higrade with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_sped	(dropped) 0.0188 0.0323 -0.0813 -0.1531	0.0185 0.0317 -0.0800 -0.1520	0.000 0.001 0.006 0.023	0 0.00 6 0.00	10 0.1483 64 0.0003

1492 . reg isat_higrade pct_black pct_hisp pct_frl pct_ell pct_sped i.year if hs==0

Source	SS	df	MS	11411201 01 020	= 1,703
Model Residual	168220.617 134197.065	8 1,694	21027.5771 79.2190469		= 265.44 = 0.0000 = 0.5563 = 0.5542
Total	302417.682	1,702	177.683715	5 1	= 8.9005
isat_higrade	Coef.	Std. Err.	t P>	• t [95% Conf	. Interval]
pct_black pct_hisp pct_frl pct_ell pct_sped	1486143 1086062 -32.69789 .5597416 -21.01728	.0179978 .0180539 1.934223 2.662032 2.518831	-8.26 -6.02 -16.90 0.21 -8.34	0.00018391 0.00014401 0.000 -36.491 0.833 -4.6614 0.000 -25.957	64073196 61 -28.90418 76 5.78096
year 2011 2012 2013 _cons	.0311668 .8936239 -4.420965 56.15242	.6676649 .6221636 .6346274 1.066806	1.44 -6.97	0.963 -1.2783 0.15132666 0.000 -5.6657 0.000 54.060	61 2.113914 01 -3.176229

1493 . pcorr isat_higrade i.year va_read if hs==0
 (obs=2951)

Partial and semipartial correlations of isat_higrade with

Variable	Partial Corr.	Semipartial Corr.	Partial Corr.^2	Semipartial Corr.^2	Significance Value
2008b.year	(dropped)				
2009.year	0.0261	0.0240	0.0007	0.00	06 0.1560
2010.year	0.0712	0.0654	0.0051	L 0.00	43 0.0001
2011.year	0.0840	0.0773	0.0071	L 0.00	60 0.0000
2012.year	0.1013	0.0933	0.0103	3 0.00	87 0.0000
2013.year	-0.0025	-0.0023	0.0000	0.00	00 0.8926
va_read	0.3813	0.3780	0.1454	4 0 . 14	29 0.0000

1494 . pcorr isat_higrade i.year va_math if hs==0
 (obs=2951)

Partial and semipartial correlations of isat_higrade with

	Partial	Semipartial	Partial	Semipartial	Significance
Variable	Corr.	Corr.	Corr.^2	Corr.^2	Value
	(]				
2008b.year	(dropped)				
2009.year	0.0032	0.0031	0.000	0.00	00 0.8602
2010.year	0.0605	0.0570	0.0037	7 0.00	32 0.0010
2011.year	0.0688	0.0649	0.0047	7 0.00	42 0.0002
2012.year	0.0876	0.0828	0.0073	7 0.00	69 0.0000
2013.year	-0.0091	-0.0086	0.0001	1 0.00	01 0.6203
va_math	0.3145	0.3118	0.0989	9 0.09	72 0.0000

1495 .

1496 . pcorr isat_higrade_trend i.year pct_black if hs==0
 (obs=2326)

Partial and semipartial correlations of isat_higrade_trend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2009b.year 2010.year 2011.year 2012.year 2013.year pct_black	(dropped) 0.1043 0.0791 0.0465 0.0809 -0.0639	0.1040 0.0786 0.0461 0.0805 -0.0635	0.010 0.006 0.002 0.006 0.006	3 0.00 2 0.00 6 0.00	620.0001210.0251650.0001

1497 . pcorr isat_higrade_trend i.year pct_blackhisp if hs==0
 (obs=2326)

Partial and semipartial correlations of isat_higrade_trend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2009b.year 2010.year 2011.year 2012.year 2013.year pct black~p	(dropped) 0.1043 0.0789 0.0462 0.0806 -0.0901	0.1037 0.0783 0.0457 0.0800 -0.0895	0.010 0.006 0.002 0.006 0.008	2 0.00 1 0.00 5 0.00	61 0.0001 21 0.0261 64 0.0001

1498 . pcorr isat_higrade_trend i.year pct_frl if hs==0
 (obs=1860)

Partial and semipartial correlations of isat_higrade_trend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_frl	(dropped) -0.0296 -0.0645 -0.0265 -0.1004	-0.0294 -0.0642 -0.0263 -0.1002	0.0009 0.0042 0.000 0.0102	2 0.00 7 0.00	41 0.0054 07 0.2541

1499 . pcorr isat_higrade_trend i.year pct_ell if hs==0
 (obs=1578)

Partial and semipartial correlations of isat_higrade_trend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_ell	(dropped) -0.0440 -0.0705 -0.0302 0.0220	-0.0439 -0.0705 -0.0301 0.0219	0.001 0.005 0.000 0.000	0 0.00 9 0.00	50 0.0051 09 0.2311

1500 . pcorr isat_higrade_trend i.year pct_sped if hs==0
 (obs=1860)

Partial and semipartial correlations of isat_higrade_trend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_sped	(dropped) -0.0266 -0.0616 -0.0209 -0.0774	-0.0264 -0.0615 -0.0208 -0.0772	0.000 0.003 0.000 0.006	8 0.00 4 0.00	38 0.0079 04 0.3678

1501 . reg isat_higrade_trend pct_black pct_hisp pct_frl pct_ell pct_sped i.year if hs==0

Source	SS	df	MS	NUMBER OF ODD	=	1,578 4,79
Model	1368.21047	8	171.026309	F(8, 1569) Prob > F	=	4.79
Residual	56053.7321	1,569	35.7257693	1	=	0.0238 0.0189
Total	57421.9426	1,577	36.4121386	Adj R-squared Root MSE	=	5.9771

isat_higra~d	Coef.	Std. Err.	t I	P> t	[95% Conf. Ir	iterval]
pct_black	0142936	.0123914	-1.15	0.249	038599	.0100119
pct_hisp	0116604	.0125118	-0.93	0.352	036202	.0128812
pct_frl	-1.872802	1.344193	-1.39	0.164	-4.509406	.7638014
pct_ell	.5830732	1.854141	0.31	0.753	-3.053782	4.219928
pct_sped	-5.067642	1.721445	-2.94	0.003	-8.444216	-1.691067
year						
2011	8388068	.465386	-1.80	0.072	-1.751651	.0740371
2012	-1.112171	.4338348	-2.56	0.010	-1.963128	2612141
2013	5205833	.4426312	-1.18	0.240	-1.388794	.3476276
_cons	6.119223	.7427151	8.24	0.000	4.662404	7.576042

1502 . pcorr isat_higrade_trend i.year va_read if hs==0
 (obs=2751)

Partial and semipartial correlations of isat_higrade_trend with

Variable	Partial Corr.	Semipartial Corr.	Partial Corr.^2	Semipartial Corr.^2	Significance Value
2008b.year	(dropped)				
2009.year	-0.0481	-0.0467	0.0023	3 0.00	22 0.0117
2010.year	0.0522	0.0506	0.0027	0.00	26 0.0062
2011.year	0.0272	0.0264	0.0007	0.00	07 0.1539
2012.year	-0.0031	-0.0030	0.0000	0.00	00 0.8694
2013.year	0.0287	0.0278	0.0008	3 0.00	08 0.1332
va_read	0.2224	0.2209	0.0495	5 0.04	88 0.0000

1503 . pcorr isat_higrade_trend i.year va_math if hs==0
 (obs=2751)

Partial and semipartial correlations of isat_higrade_trend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2008b.year 2009.year 2010.year 2011.year 2012.year 2013.year va math	(dropped) -0.0625 0.0474 0.0176 -0.0088 0.0236 0.2627	-0.0601 0.0455 0.0169 -0.0084 0.0226 0.2609	0.0039 0.0022 0.0003 0.0003 0.0004 0.0006	2 0.00 3 0.00 L 0.00 5 0.00	21 0.0130 03 0.3558 01 0.6459 05 0.2162

1504 .

1505 .

1506 . pcorr attend i.year pct_black if hs==0
 (obs=2511)

Partial and semipartial correlations of attend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2009b.year 2010.year 2011.year 2012.year 2013.year pct_black	(dropped) 0.0516 0.0067 0.0840 0.0023 -0.5189	0.0440 0.0057 0.0718 0.0020 -0.5168	0.002 0.000 0.007 0.000 0.269	0 0.00 1 0.00 0 0.00	00 0.7381 52 0.0000 00 0.9072

1507 . pcorr attend i.year pct_blackhisp if hs==0
 (obs=2511)

Partial and semipartial correlations of attend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2009b.year 2010.year 2011.year 2012.year 2013.year pct_black~p	(dropped) 0.0467 0.0094 0.0801 0.0146 -0.3456	0.0437 0.0088 0.0751 0.0137 -0.3442	0.002 0.000 0.006 0.000 0.119	1 0.00 4 0.00 2 0.00	01 0.6377 56 0.0001 02 0.4642

1508 . pcorr attend i.year pct_frl if hs==0 (obs=2016)

Partial and semipartial correlations of attend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_frl	(dropped) -0.0453 0.0357 -0.0396 -0.3145	-0.0430 0.0338 -0.0375 -0.3135	0.002 0.001 0.001 0.008	3 0.002 6 0.002	110.1092140.0755

1509 . pcorr attend i.year pct_ell if hs==0
 (obs=1707)

Partial and semipartial correlations of attend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_ell	(dropped) -0.0540 -0.0198 -0.0909 0.3262	-0.0509 -0.0187 -0.0859 0.3248	0.002 0.000 0.008 0.106	4 0.00 3 0.00	03 0.4133 74 0.0002

1510 . pcorr attend i.year pct_sped if hs==0
 (obs=2016)

Partial and semipartial correlations of attend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_sped	(dropped) -0.0329 0.0584 -0.0251 -0.4943	-0.0285 0.0507 -0.0218 -0.4927	0.001 0.003 0.000 0.244	4 0.00 6 0.00	26 0.0087 05 0.2604

1511 . reg attend pct_black pct_hisp pct_frl pct_ell pct_sped i.year if hs==0

Source	SS	df	MS		=	1,707
Model	4214.48861	0	526.811077	F(8, 1698) Prob > F	=	256.45 0.0000
Residual	3488.06242	° 1,698	2.05421815		=	0.5472
Residual	3400.00242	1,090	2.03421015	Adj R-squared	=	0.5450
Total	7702.55104	1,706	4.51497716	5 1	=	1.4333

attend	Coef.	Std. Err.	t	P> t	[95% Conf. Ir	nterval]
pct_black	0151124	.0028925	-5.22	0.000	0207856	0094392
pct_hisp	.0029215	.0029057	1.01	0.315	0027777	.0086207
pct_frl	-2.247611	.3107305	-7.23	0.000	-2.857066	-1.638156
pct_ell	1.082454	.4249711	2.55	0.011	.248932	1.915976
pct_sped	-11.66932	.3646116	-32.00	0.000	-12.38446	-10.95419
year						
2011	2881815	.1073942	-2.68	0.007	4988204	0775425
2012	.1349358	.1000134	1.35	0.177	0612266	.3310983
2013	4432881	.1020896	-4.34	0.000	6435228	2430535
_cons	98.63358	.1707319	577.71	0.000	98.29872	98.96845

1512 .

```
1513 . pcorr attend_trend i.year pct_black if hs==0
   (obs=2444)
```

Partial and semipartial correlations of attend_trend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2009b.year 2010.year 2011.year 2012.year 2013.year pct black	(dropped) 0.1395 -0.0411 0.1065 -0.2084 0.0912	0.1303 -0.0381 0.0992 -0.1972 0.0847	0.019 0.001 0.011 0.043 0.008	7 0.00 4 0.00 4 0.03	15 0.0423 98 0.0000 89 0.0000

1514 . pcorr attend_trend i.year pct_blackhisp if hs==0
 (obs=2444)

Partial and semipartial correlations of attend_trend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2009b.year 2010.year 2011.year 2012.year 2013.year pct_black~p	(dropped) 0.1392 -0.0413 0.1060 -0.2096 0.0605	0.1304 -0.0383 0.0989 -0.1989 0.0562	0.019 0.001 0.011 0.043 0.003	7 0.002 2 0.002 9 0.033	15 0.0413 98 0.0000 95 0.0000

1515 . pcorr attend_trend i.year pct_frl if hs==0
 (obs=1962)

Partial and semipartial correlations of attend_trend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_frl	(dropped) -0.1968 -0.0374 -0.3614 0.0724	-0.1835 -0.0342 -0.3542 0.0663	0.038 0.001 0.130 0.005	4 0.00 6 0.12	120.0977540.0000

1516 . pcorr attend_trend i.year pct_ell if hs==0
 (obs=1662)

Partial and semipartial correlations of attend_trend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_ell	(dropped) -0.1817 -0.0123 -0.3641 -0.0751	-0.1664 -0.0111 -0.3520 -0.0678	0.033 0.000 0.132 0.005	2 0.00 6 0.12	01 0.6165 39 0.0000

1517 . pcorr attend_trend i.year pct_sped if hs==0 (obs=1962)

Partial and semipartial correlations of attend_trend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_sped	(dropped) -0.1980 -0.0386 -0.3657 -0.0440	-0.1849 -0.0353 -0.3596 -0.0403	0.0392 0.0019 0.1337 0.0019	5 0.00 7 0.12	12 0.0878 93 0.0000

1518 . reg attend_trend pct_black pct_hisp pct_frl pct_ell pct_sped i.year if hs==0

Source	SS	df	MS		of obs = 1653)	1,662 = 50.60
Model	291.376275 1189.72341	8	36.4220344	e Prob) > F	= 0.0000
Residual	1109./2341	1,653	.719735881		quared R-squared	= 0.1967 = 0.1928
Total	1481.09969	1,661	.891691564	-	K-Squared MSE	- 0.1928 84837
attend_trend	Coef.	Std. Err.	t P>	· t	[95% Conf.	Interval]
pct_black	.0018293	.001733	1.06	0.291	001569	8 .0052285
pct_hisp	.0001277	.0017479	0.07	0.942	003300	7 .0035561
pct_frl	.1511615	.1865195	0.81	0.418	214677	9.5170009
pct_ell	1174849	.2553342	-0.46	0.645	618297	5.3833276
pct_sped	3999336	.2174229	-1.84	0.066	826386	8 .0265197
year						
2011	4796318	.0645841	-7.43	0.000	606307	13529565
2012	0515717	.0600343	-0.86	0.390	169322	9.0661795
2013	9761952	.0612469	-15.94	0.000	-1.09632	58560655
_cons	.3632621	.1026447	3.54	0.000	.161934	8.5645894

- 1519 .
- 1520 .

(obs=2458)

Partial and semipartial correlations of va_read with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2009b.year 2010.year 2011.year 2012.year 2013.year pct_black	(dropped) 0.0503 0.0402 0.0359 0.0443 -0.2354	0.0488 0.0390 0.0348 0.0430 -0.2349	0.002 0.001 0.001 0.002 0.055	6 0.002 3 0.002 0 0.002	15 0.0466 12 0.0758 18 0.0283

^{1521 .} pcorr va_read i.year pct_black if hs==0 $\,$

1522 . pcorr va_read i.year pct_blackhisp if hs==0 (obs=2458)

Partial and semipartial correlations of va_read with

	Partial	Semipartial	Partial	Semipartial	Significance
Variable	Corr.	Corr.	Corr.^2	Corr.^2	Value
	()				
2009b.year	(dropped)				
2010.year	0.0505	0.0490	0.002	5 0.00	24 0.0124
2011.year	0.0409	0.0397	0.001	7 0.00	16 0.0430
2012.year	0.0362	0.0351	0.001	3 0.00	12 0.0729
2013.year	0.0468	0.0454	0.002	2 0.00	21 0.0205
pct_black~p	-0.2366	-0.2362	0.056	0 0.05	58 0.0000

1523 . pcorr va_read i.year pct_frl if hs==0
 (obs=1972)

Partial and semipartial correlations of va_read with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_frl	(dropped) -0.0164 -0.0204 -0.0055 -0.2192	-0.0160 -0.0199 -0.0054 -0.2191	0.000 0.000 0.000 0.048	4 0.00 0 0.00	04 0.3649 00 0.8069

1524 . pcorr va_read i.year pct_ell if hs==0
 (obs=1671)

Partial and semipartial correlations of va_read with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_ell	(dropped) -0.0089 -0.0188 0.0029 0.0707	-0.0089 -0.0187 0.0029 0.0707	0.000 0.000 0.000 0.005	4 0.00 0 0.00	03 0.4440 00 0.9061

^{1525 .} pcorr va_read i.year pct_sped if hs==0
 (obs=1972)

Partial and semipartial correlations of va_read with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_sped	(dropped) -0.0098 -0.0138 0.0079 -0.0527	-0.0098 -0.0138 0.0079 -0.0527	0.000 0.000 0.000 0.002	2 0.00 1 0.00	02 0.5409 01 0.7259

1526 . reg va_read pct_black pct_hisp pct_frl pct_ell pct_sped i.year if hs==0

Source	SS	df	MS	Number of obs	=	1,671
Model Residual	105.054671 1496.79486	8 1,662	13.1318339 .900598589	R-squared	=	0.0000
Total	1601.84953	1,670	.959191334	- Adj R-squared Root MSE	=	
va_read	Coef.	Std. Err.	t P>	t [95% Con	f.I	nterval]
pct_black pct_hisp pct_frl pct_ell pct_sped	.0000632 0015597 -1.148225 1.027772 4872132	.0019496 .0019354 .2096088 .2938691 .278584	0.03 -0.81 -5.48 3.50 -1.75	0.974 0037 0.420 0053 0.000 -1.55 0.000 .451 0.080 -1.033	557 935 379	.0038872 .0022363 7371004 1.604164 .0591992
year 2011 2012 2013 _cons	054399 0511761 0222989 1.006529	.0720111 .067161 .0684388 .1146166		0.450195 0.4461829 0.7451565 0.000 .7817	052 342	.086843 .080553 .1119364 1.231338

1527 .

1528 .
1529 . pcorr va_math i.year pct_black if hs==0

(obs=2458)

Partial and semipartial correlations of va_math with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2009b.year 2010.year 2011.year 2012.year 2013.year pct_black	(dropped) 0.0107 0.0173 0.0045 0.0059 -0.0874	0.0106 0.0173 0.0045 0.0059 -0.0873	0.000 0.000 0.000 0.000 0.000	3 0.00 0 0.00 0 0.00 0 0.00	030.3912000.8223000.7704

1530 . pcorr va_math i.year pct_blackhisp if hs==0 (obs=2458)

Partial and semipartial correlations of va_math with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2009b.year 2010.year 2011.year 2012.year 2013.year pct_black~p	(dropped) 0.0108 0.0170 0.0034 0.0041 -0.1618	0.0106 0.0167 0.0034 0.0040 -0.1618	0.000 0.000 0.000 0.000 0.000	3 0.000 0 0.000 0 0.000	03 0.4010 00 0.8659 00 0.8398

1531 . pcorr va_math i.year pct_frl if hs==0 (obs=1972)

Partial and semipartial correlations of va_math with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_frl	(dropped) 0.0095 -0.0105 -0.0083 -0.1179	0.0094 -0.0104 -0.0082 -0.1179	0.000 0.000 0.000 0.013	1 0.00 1 0.00	01 0.6417 01 0.7134

1532 . pcorr va_math i.year pct_ell if hs==0
 (obs=1671)

Partial and semipartial correlations of va_math with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_ell	(dropped) 0.0108 0.0150 0.0213 0.0048	0.0108 0.0150 0.0213 0.0048	0.000 0.000 0.000 0.000	2 0.00 5 0.00	02 0.5392 05 0.3848

1533 . pcorr va_math i.year pct_sped if hs==0
 (obs=1972)

Partial and semipartial correlations of va_math with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_sped	(dropped) 0.0136 -0.0062 -0.0014 -0.0816	0.0135 -0.0062 -0.0013 -0.0815	0.000 0.000 0.000 0.000	0 0.00 0 0.00	00 0.7840 00 0.9521

1534 . reg va_math pct_black pct_hisp pct_frl pct_ell pct_sped i.year if hs==0

Source	SS	df	MS	Number o		1,671 = 5.52
Model	41.3461716	8	5.16827145	• F(8, 1 Prob >	,	= 5.52 = 0.0000
Residual	1555.17779	1,662	.935726709	R-squa	ared	= 0.0259
				Adj R-	-squared	= 0.0212
Total	1596.52396	1,670	.956002372	Root N	MSE	= .96733
	1					
va_math	Coef.	Std. Err.	t P>	t [95% Conf.	Interval]
pct_black	.0002745	.0019873	0.14	0.890	0036234	.0041724
 pct_hisp	000949	.0019727	-0.48	0.631	0048183	.0029203
pct_frl	7084318	.2136576	-3.32	0.001	-1.127498	2893654
pct_ell	.4295093	.2995455	1.43	0.152	158017	1.017036
pct_sped	7158756	.2839651	-2.52	0.012	-1.272843	1589086
year						
2011	.0186669	.0734021	0.25	0.799	1253033	.1626371
2012	.0395178	.0684583	0.58	0.564	0947557	.1737914
2013	.0370562	.0697608	0.53	0.595	099772	.1738845
_cons	.6380797	.1168306	5.46	0.000	.4089291	.8672302

1535 .

```
1536 .
1537 . pcorr dropout i.year pct_black if hs==1
```

Partial and semipartial correlations of dropout with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2009b.year 2010.year 2011.year 2012.year 2013.year pct black	(dropped) -0.0567 -0.0208 0.0043 -0.1148 0.2666	-0.0541 -0.0199 0.0041 -0.1101 0.2637	0.003 0.000 0.000 0.013 0.013	4 0.00 0 0.00 2 0.01	04 0.5840 00 0.9100 21 0.0025

(obs=698)

Partial and semipartial correlations of dropout with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2009b.year 2010.year 2011.year 2012.year 2013.year pct_black~p	(dropped) -0.0563 -0.0239 0.0012 -0.1183 0.2147	-0.0545 -0.0231 0.0012 -0.1151 0.2124	0.003 0.000 0.000 0.014 0.014	6 0.00 0 0.00 0 0.01	05 0.5304 00 0.9738 32 0.0018

1539 . pcorr dropout i.year pct_frl if hs==1 (obs=578)

Partial and semipartial correlations of dropout with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_frl	(dropped) 0.0550 0.0492 -0.0759 0.1955	0.0535 0.0478 -0.0739 0.1935	0.003 0.002 0.005 0.038	4 0.00 8 0.00	230.2389550.0688

1540 . pcorr dropout i.year pct_ell if hs==1 (obs=523)

Partial and semipartial correlations of dropout with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_ell	(dropped) 0.0345 0.0711 -0.0534 -0.1360	0.0339 0.0699 -0.0525 -0.1347	0.001 0.005 0.002 0.018	1 0.00 9 0.00	49 0.1054 28 0.2242

1541 . pcorr dropout i.year pct_sped if hs==1 (obs=578)

Partial and semipartial correlations of dropout with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_sped	(dropped) 0.0350 0.0589 -0.0714 0.0484	0.0346 0.0583 -0.0708 0.0479	0.001 0.003 0.005 0.002	5 0.00 1 0.00	34 0.1584 50 0.0870

1542 . reg dropout pct_black pct_hisp pct_frl pct_ell pct_sped i.year if hs==1

			F(8, 514)	=	8.0
3529.9163	8	441.239537	Prob > F	=	0.000
28134.7492	514	54.7368662	R-squared	=	0.111
			Adj R-squared	=	0.097
31664.6655	522	60.6602787	Root MSE	=	7.398
	28134.7492	28134.7492 514	28134.7492 514 54.7368662	3529.9163 8 441.239537 Prob > F 28134.7492 514 54.7368662 R-squared Adj R-squared Adj R-squared	3529.9163 8 441.239537 Prob > F = 28134.7492 514 54.7368662 R-squared = Adj R-squared =

dropout	Coef.	Std. Err.	t	P> t	[95% Conf. In	terval]
pct_black	.0393003	.0400601	0.98	0.327	0394014	.118002
pct_hisp	0117985	.0432077	-0.27	0.785	0966839	.0730869
pct_frl	9.313258	4.319192	2.16	0.032	.8278165	17.7987
pct_ell	-1.79384	8.751494	-0.20	0.838	-18.98694	15.39926
pct_sped	.2816713	2.907111	0.10	0.923	-5.42961	5.992953
year						
2011	.9714026	1.00389	0.97	0.334	-1.000831	2.943636
2012	.8896531	.9497661	0.94	0.349	9762479	2.755554
2013	-1.708987	.9537999	-1.79	0.074	-3.582812	.1648392
_cons	-3.104185	2.432898	-1.28	0.203	-7.883833	1.675463

1543 .

1544 . pcorr dropout_trend i.year pct_black if hs==1

(obs=617)

Partial and semipartial correlations of dropout_trend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2009b.year 2010.year 2011.year 2012.year 2013.year pct_black	(dropped) -0.1348 -0.1874 -0.1595 -0.2214 0.1033	-0.1316 -0.1845 -0.1563 -0.2196 0.1005	0.018 0.035 0.025 0.049 0.010	1 0.03 4 0.02 0 0.04	40 0.0000 44 0.0001 82 0.0000

1545 . pcorr dropout_trend i.year pct_blackhisp if hs==1
 (obs=617)

Partial and semipartial correlations of dropout_trend with

	Partial	Semipartial	Partial	Semipartial	Significance
Variable	Corr.	Corr.	Corr.^2	Corr.^2	Value
2009b.year	(dropped)				
2010.year	-0.1340	-0.1314	0.0180	0.01	73 0.0009
2011.year	-0.1862	-0.1842	0.0347	7 0.03	39 0.0000
2012.year	-0.1593	-0.1567	0.0254	1 0.024	46 0.0001
2013.year	-0.2223	-0.2215	0.0494	1 0.049	91 0.0000
pct_black~p	0.0439	0.0427	0.0019	9 0.003	L8 0.2782

1546 . pcorr dropout_trend i.year pct_frl if hs==1
 (obs=520)

Partial and semipartial correlations of dropout_trend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_frl	(dropped) -0.0560 -0.0202 -0.0952 -0.0408	-0.0557 -0.0201 -0.0951 -0.0406	0.003 0.000 0.009 0.001	4 0.00 1 0.00	04 0.6460 90 0.0304

1547 . pcorr dropout_trend i.year pct_ell if hs==1
 (obs=475)

Partial and semipartial correlations of dropout_trend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_ell	(dropped) -0.0291 0.0206 -0.0531 -0.0735	-0.0289 0.0204 -0.0529 -0.0732	0.000 0.000 0.002 0.005	4 0.00 8 0.00	04 0.6558 28 0.2493

1548 . pcorr dropout_trend i.year pct_sped if hs==1
 (obs=520)

Partial and semipartial correlations of dropout_trend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_sped	(dropped) -0.0556 -0.0252 -0.0994 0.0518	-0.0553 -0.0251 -0.0993 0.0515	0.003 0.000 0.009 0.002	6 0.00 9 0.00	06 0.5670 99 0.0238

Source	SS	df	MS		of obs =	475
Model	238.766755	8	29.8458444	F(8, Prob		= 1.70 = 0.0956
Residual	8172.50482	466	17.537564		uared	= 0.0284
				Adj H	R-squared	= 0.0117
Total	8411.27158	474	17.7452987	Root	MSE	= 4.1878
dropout_tr~d	Coef.	Std. Err.	t P>	t	[95% Conf.	Interval]
pct black	.0136904	.023738	0.58	0.564	0329562	2 .0603371
pct_hisp	.0239087	.0254803	0.94	0.349	0261619	.0739792
pct_frl	-2.8358	2.611168	-1.09	0.278	-7.966923	L 2.295322
pct_ell	-10.56478	5.17418	-2.04	0.042	-20.73239	93971647
pct_sped	4.094926	1.673889	2.45	0.015	.805621	5 7.384231
year						
2011	5751156	.6081428	-0.95	0.345	-1.77015	.6199263
2012	.2406479	.5697013	0.42	0.673	878853	7 1.36015
2013	710337	.5710098	-1.24	0.214	-1.83243	L .4117358
_cons	5064244	1.423057	-0.36	0.722	-3.302828	3 2.28998

1549 . reg dropout_trend pct_black pct_hisp pct_frl pct_ell pct_sped i.year if hs==1

1550 .

(obs=535)

Partial and semipartial correlations of freshman with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2009b.year 2010.year 2011.year 2012.year 2013.year pct_black	(dropped) 0.1291 0.0911 0.1389 0.2489 -0.2862	0.1205 0.0847 0.1297 0.2378 -0.2763	0.016 0.008 0.019 0.062 0.081	3 0.00 3 0.01 0 0.05	72 0.0358 68 0.0013 65 0.0000

1552 . pcorr freshman i.year pct_blackhisp if hs==1
 (obs=535)

Partial and semipartial correlations of freshman with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2009b.year 2010.year 2011.year 2012.year 2013.year pct_black~p	(dropped) 0.1377 0.1004 0.1505 0.2563 -0.2948	0.1283 0.0931 0.1405 0.2446 -0.2846	0.019 0.010 0.022 0.065 0.086	1 0.00 7 0.01 7 0.05	87 0.0207 97 0.0005 98 0.0000

^{1551 .} pcorr freshman i.year pct_black if hs==1

1553 . pcorr freshman i.year pct_frl if hs==1 (obs=447)

Partial and semipartial correlations of freshman with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_frl	(dropped) -0.0833 0.0344 0.1668 -0.3401	-0.0769 0.0317 0.1556 -0.3326	0.006 0.001 0.027 0.115	2 0.002 8 0.02	10 0.4694 42 0.0004

1554 . pcorr freshman i.year pct_ell if hs==1
 (obs=409)

Partial and semipartial correlations of freshman with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_ell	(dropped) 0.0011 -0.0143 0.1347 -0.0480	0.0011 -0.0140 0.1337 -0.0473	0.000 0.000 0.018 0.002	2 0.00 1 0.01	02 0.7744 79 0.0066

1555 . pcorr freshman i.year pct_sped if hs==1 (obs=447)

Partial and semipartial correlations of freshman with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_sped	(dropped) -0.0589 0.0070 0.1721 -0.3630	-0.0538 0.0064 0.1592 -0.3551	0.003 0.000 0.029 0.131	0 0.00 6 0.02	00 0.8836 54 0.0003

1556 . reg freshman pct_black pct_hisp pct_frl pct_ell pct_sped i.year if hs==1

Source	SS	df	MS		of obs =	409
Model Residual	22700.071 67445.6984	8 400	2837.50888 168.614246	Prob R-sc	400) p > F quared	$= 16.83 \\ = 0.0000 \\ = 0.2518$
Total	90145.7694	408	220.945513	5	R-squared MSE	= 0.2369 = 12.985
freshman	Coef.	Std. Err.	t P>	• t	[95% Conf.	Interval]
pct_black	.0035485	.0766071	0.05	0.963	1470543	
pct_hisp	.1477369	.0825376	1.79	0.074	0145248	
pct_frl	-26.63679	8.764886	-3.04	0.003	-43.86779	9 -9.405791
pct_ell	-54.78249	17.68014	-3.10	0.002	-89.54008	-20.02489
pct_sped	-53.34237	12.91852	-4.13	0.000	-78.73906	-27.94569
year						
2011	7954447	1.903315	-0.42	0.676	-4.537195	2.946305
2012	1.067314	1.813496	0.59	0.557	-2.49786	4.632489
2013	7.596551	1.89631	4.01	0.000	3.868571	11.32453
_cons	100.9474	4.512138	22.37	0.000	92.07694	109.8179

1557 .

```
1558 . pcorr freshman_trend i.year pct_black if hs==1
  (obs=484)
```

Partial and semipartial correlations of freshman_trend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2009b.year 2010.year 2011.year 2012.year 2013.year pct_black	(dropped) 0.0605 0.0186 -0.0471 0.0130 0.0415	0.0602 0.0185 -0.0468 0.0129 0.0412	0.003 0.000 0.002 0.000 0.001	3 0.00 2 0.00 2 0.00	03 0.6841 22 0.3026 02 0.7770

1559 . pcorr freshman_trend i.year pct_blackhisp if hs==1
 (obs=484)

Partial and semipartial correlations of freshman_trend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2009b.year 2010.year 2011.year 2012.year 2013.year pct_black~p	(dropped) 0.0588 0.0156 -0.0491 0.0129 0.0938	0.0583 0.0154 -0.0486 0.0127 0.0932	0.003 0.000 0.002 0.000 0.000	2 0.00 4 0.00 2 0.00	02 0.7337 24 0.2832 02 0.7784

1560 . pcorr freshman_trend i.year pct_frl if hs==1
 (obs=403)

Partial and semipartial correlations of freshman_trend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_frl	(dropped) -0.0362 -0.1241 -0.0529 0.1254	-0.0356 -0.1231 -0.0521 0.1245	0.001 0.015 0.002 0.002	4 0.01 8 0.00	520.0130270.2917

1561 . pcorr freshman_trend i.year pct_ell if hs==1
 (obs=375)

Partial and semipartial correlations of freshman_trend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_ell	(dropped) -0.0353 -0.1104 -0.0467 0.0874	-0.0349 -0.1099 -0.0463 0.0868	0.001 0.012 0.002 0.007	2 0.01 2 0.00	210.0333210.3690

1562 . pcorr freshman_trend i.year pct_sped if hs==1 (obs=403)

Partial and semipartial correlations of freshman_trend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_sped	(dropped) -0.0457 -0.1181 -0.0556 0.1033	-0.0451 -0.1174 -0.0550 0.1025	0.002: 0.013: 0.003: 0.010	9 0.01 1 0.00	38 0.0182 30 0.2675

1563 . reg freshman_trend pct_black pct_hisp pct_frl pct_ell pct_sped i.year if hs==1

Source	SS	df	MS		OL ODD	=	375
Model	1801.49085	8	225.18635		366) > F	=	1.76 0.0836
Residual	46817.9095	366	127.91778		quared	=	0.0371
					R-squared	=	0.0160
Total	48619.4004	374	129.99839	5	t MSE	=	11.31
freshman_t~d	Coef.	Std. Err.	t P	> t	[95% Conf	. In	iterval]
pct_black	0266177	.0692892	-0.38	0.701	16287	25	.1096372
pct_hisp	0344947	.0741225	-0.47	0.642	18025	41	.1112646
pct_frl	10.62528	8.156572	1.30	0.194	-5.414	35	26.6649
pct_ell	13.30304	15.68707	0.85	0.397	-17.545	06	44.15115
pct_sped	9.270196	11.83051	0.78	0.434	-13.994	12	32.53451
year							
2011	773651	1.763812	-0.44	0.661	-4.2421	29	2.694827
2012	-3.854952	1.664258	-2.32	0.021	-7.127	66	5822437
2013	-1.766428	1.713338	-1.03	0.303	-5.1356	49	1.602794
_cons	-1.247082	4.083452	-0.31	0.760	-9.2770	53	6.78289

1564 .

1565 .

(obs=611)

Partial and semipartial correlations of act with

Variable	Partial Corr.	Semipartial Corr.	Partial Corr.^2	Semipartial Corr.^2	Significance Value
2009b.year	(dropped)				
2010.year	0.0153	0.0138	0.000	2 0.00	02 0.7069
2011.year	0.0017	0.0015	0.000	0.00	00 0.9669
2012.year	0.0414	0.0372	0.001	7 0.00	14 0.3091
2013.year	0.0374	0.0337	0.001	4 0.00	11 0.3581
pct_black	-0.4318	-0.4309	0.186	5 0.18	56 0.0000

^{1566 .} pcorr act i.year pct_black if hs==1

1567 . pcorr act i.year pct_blackhisp if hs==1 (obs=611)

Partial and semipartial correlations of act with

	Partial	Semipartial	Partial	Semipartial	Significance
Variable	Corr.	Corr.	Corr.^2	Corr.^2	Value
2009b.year	(dropped)				
2010.year	0.0308	0.0224	0.000	9 0.00	05 0.4486
2011.year	0.0254	0.0185	0.000	6 0.00	03 0.5317
2012.year	0.0629	0.0457	0.004	0.00	21 0.1218
2013.year	0.0649	0.0472	0.004	2 0.00	22 0.1100
pct_black~p	-0.6868	-0.6852	0.471	7 0.46	96 0.0000

1568 . pcorr act i.year pct_frl if hs==1
 (obs=508)

Partial and semipartial correlations of act with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_frl	(dropped) -0.1356 0.0886 0.0702 -0.7412	-0.0917 0.0596 0.0471 -0.7397	0.018 0.007 0.004 0.549	9 0.00 9 0.00	360.0465220.1152

^{1569 .} pcorr act i.year pct_ell if hs==1
 (obs=466)

Partial and semipartial correlations of act with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_ell	(dropped) -0.0122 -0.0106 -0.0038 -0.0748	-0.0122 -0.0106 -0.0038 -0.0748	0.000 0.000 0.000 0.005	1 0.00 0 0.00	01 0.8194 00 0.9345

^{1570 .} pcorr act i.year pct_sped if hs==1
 (obs=508)

Partial and semipartial correlations of act with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_sped	(dropped) -0.0028 0.0392 0.0669 -0.6156	-0.0022 0.0309 0.0527 -0.6144	0.000 0.001 0.004 0.379	5 0.00 5 0.00	10 0.3791 28 0.1335

1571 . reg act pct_black pct_hisp pct_frl pct_ell pct_sped i.year if hs==1

Source	SS	df	MS	Number of obb	= 466
Model Residual	2966.41197 1105.79801	8 457	370.801496 2.4196893	R-squared	$= 153.24 \\ = 0.0000 \\ = 0.7285 \\ 0.7285$
Total	4072.20998	465	8.75744081	- Adj R-squared . Root MSE	= 0.7237 = 1.5555
act	Coef.	Std. Err.	t P>	• t [95% Conf	. Interval]
pct_black pct_hisp pct_frl pct_ell pct_sped	0507637 0265878 -9.304525 -10.05555 -16.53358	.0087588 .0094187 1.008066 2.036272 1.520809	-5.80 -2.82 -9.23 -4.94 -10.87	$\begin{array}{rrrr} 0.000 &06797 \\ 0.005 &04509 \\ 0.000 & -11.285 \\ 0.000 & -14.057 \\ 0.000 & -19.522 \end{array}$	710080786 55 -7.323505 17 -6.053933
year 2011 2012 2013 _cons	3534024 .3871273 .3975916 31.61649	.2274752 .2110715 .2101189 .5289652	-1.55 1.83 1.89 59.77	0.12180042 0.06702766 0.05901532 0.000 30.576	37 .8019183 74 .8105107

Partial and semipartial correlations of act_trend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2009b.year 2010.year 2011.year 2012.year 2013.year pct_black	(dropped) 0.0337 0.0543 0.1587 0.0667 -0.2340	0.0323 0.0521 0.1539 0.0640 -0.2305	0.001 0.002 0.025 0.004 0.004	9 0.00 2 0.02 4 0.00	27 0.2229 37 0.0003 41 0.1343

(obs=510)

Partial and semipartial correlations of act_trend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2009b.year 2010.year 2011.year 2012.year 2013.year pct_black~p	(dropped) 0.0410 0.0648 0.1677 0.0768 -0.2228	0.0394 0.0624 0.1633 0.0739 -0.2195	0.001 0.004 0.028 0.005 0.049	2 0.00 1 0.02 9 0.00	390.1454670.0002550.0845

1575 . pcorr act_trend i.year pct_frl if hs==1 (obs=428)

Partial and semipartial correlations of act_trend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_frl	(dropped) -0.0031 0.1534 0.0438 -0.2032	-0.0030 0.1500 0.0424 -0.2007	0.000 0.023 0.001 0.041	5 0.02 9 0.00	250.0015180.3672

1576 . pcorr act_trend i.year pct_ell if hs==1
 (obs=398)

Partial and semipartial correlations of act_trend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_ell	(dropped) 0.0345 0.1233 0.0203 0.0019	0.0342 0.1230 0.0201 0.0019	0.001 0.015 0.000 0.000	2 0.01 4 0.00	510.0142040.6881

1577 . pcorr act_trend i.year pct_sped if hs==1
 (obs=428)

Partial and semipartial correlations of act_trend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_sped	(dropped) 0.0320 0.1455 0.0467 -0.2922	0.0302 0.1389 0.0441 -0.2885	0.001 0.021 0.002 0.085	2 0.01 2 0.00	93 0.0026 19 0.3373

1578 . reg act_trend pct_black pct_hisp pct_frl pct_ell pct_sped i.year if hs==1

Source	SS	df	MS		of obs =	398
Model	18.5229264	8	2.31536581	. Prob		= 7.57 = 0.0000
Residual	119.016069	389	.305953904		uared	= 0.1347
	127 52005	207	246445021	-	R-squared	= 0.1169
Total	137.538995	397	.346445831	. Root	MSE	55313
act_trend	Coef.	Std. Err.	t P>	• t	[95% Conf.	Interval]
pct_black	0026741	.0033704	-0.79	0.428	0093000	.0039524
 pct_hisp	.0012138	.0036201	0.34	0.738	0059030	.0083312
pct_frl	2531559	.4077241	-0.62	0.535	-1.054774	4 .5484627
pct_ell	-1.426052	.7609403	-1.87	0.062	-2.922122	2 .0700181
pct_sped	-2.080091	.6097938	-3.41	0.001	-3.27899	58811868
year						
2011	.064291	.0876584	0.73	0.464	1080524	4 .2366345
2012	.2413841	.0813893	2.97	0.003	.0813662	.401402
2013	.0762081	.0803396	0.95	0.343	0817461	.2341622
cons	.7537767	.1986664	3.79	0.000	.363182	5 1.144371

1579 .

```
1580 . pcorr psae_read i.year pct_black if hs==1
  (obs=611)
```

Partial and semipartial correlations of psae_read with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2009b.year 2010.year 2011.year 2012.year 2013.year pct_black	(dropped) -0.0366 -0.0591 -0.0537 0.0023 -0.3872	-0.0336 -0.0544 -0.0494 0.0021 -0.3857	0.001 0.003 0.002 0.000 0.149	5 0.00 9 0.00 0 0.00	30 0.1460 24 0.1865 00 0.9544

1581 . pcorr psae_read i.year pct_blackhisp if hs==1
 (obs=611)

Partial and semipartial correlations of psae_read with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2009b.year 2010.year 2011.year 2012.year 2013.year pct_black~p	(dropped) -0.0342 -0.0511 -0.0561 0.0191 -0.6678	-0.0253 -0.0379 -0.0417 0.0142 -0.6652	0.001 0.002 0.003 0.000 0.445	6 0.00 1 0.00 4 0.00	140.2088170.1675020.6384

1582 . pcorr psae_read i.year pct_frl if hs==1
 (obs=508)

Partial and semipartial correlations of psae_read with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_frl	(dropped) -0.1486 0.0251 0.0985 -0.7427	-0.1002 0.0167 0.0660 -0.7397	0.022 0.000 0.009 0.551	6 0.00 7 0.00	03 0.5739 44 0.0268

1583 . pcorr psae_read i.year pct_ell if hs==1
 (obs=466)

Partial and semipartial correlations of psae_read with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_ell	(dropped) -0.0250 -0.0579 0.0104 -0.1239	-0.0247 -0.0574 0.0103 -0.1235	0.000 0.003 0.000 0.015	4 0.00 1 0.00	330.2138010.8231

1584 . pcorr psae_read i.year pct_sped if hs==1 (obs=508)

Partial and semipartial correlations of psae_read with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_sped	(dropped) -0.0136 -0.0157 0.0934 -0.6361	-0.0104 -0.0121 0.0721 -0.6336	0.000 0.000 0.008 0.404	2 0.00 7 0.00	01 0.7243 52 0.0359

1585 . reg psae_read pct_black pct_hisp pct_frl pct_ell pct_sped i.year if hs==1

Source	SS	df	MS		c of obs = , 457)	466 = 158.69
Model Residual	164248.415 59124.5067	8 457	20531.051 129.37528	18 Prol 88 R-se	y 4577 p > F quared R-squared	$\begin{array}{rcl} - & 138.09 \\ = & 0.0000 \\ = & 0.7353 \\ = & 0.7307 \end{array}$
Total	223372.921	465	480.37187	5	k-Squared t MSE	= 0.7307 = 11.374
psae_read	Coef.	Std. Err.	t I	₽> t	[95% Conf.	Interval]
pct_black pct_hisp pct_frl pct_ell pct_sped	3569195 222993 -66.28741 -73.90728 -141.616	.0640461 .0688707 7.371145 14.88955 11.1204	-5.57 -3.24 -8.99 -4.96 -12.73	0.000 0.001 0.000 0.000 0.000	4827809 3583356 -80.77295 -103.1678 -163.4694	50876505 5 -51.80187 -44.6468
year 2011 2012 2013	-3.383204 2972275 3.793459	1.663336 1.543389 1.536424	-2.03 -0.19 2.47	0.043 0.847 0.014	-6.651939 -3.330247 .7741277	2.735792

35.90 0.000

131.2375

146.4396

1586 .

1587 . pcorr psae_read_trend i.year pct_black if hs==1 (obs=426)

138.8386

_cons

Partial and semipartial correlations of psae_read_trend with

3.86788

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_black	(dropped) -0.0366 -0.0643 0.1749 -0.0439	-0.0352 -0.0619 0.1708 -0.0422	0.001 0.004 0.030 0.001	1 0.00 6 0.02	38 0.1870 92 0.0003

1588 . pcorr psae_read_trend i.year pct_blackhisp if hs==1
 (obs=426)

Partial and semipartial correlations of psae_read_trend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_black~p	(dropped) -0.0354 -0.0634 0.1759 -0.0543	-0.0341 -0.0611 0.1718 -0.0523	0.001 0.004 0.031 0.033	0 0.00 0 0.02	370.1930950.0003

1589 . pcorr psae_read_trend i.year pct_frl if hs==1
 (obs=426)

Partial and semipartial correlations of psae_read_trend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_frl	(dropped) -0.0385 -0.0628 0.1756 -0.0171	-0.0371 -0.0606 0.1718 -0.0165	0.001 0.003 0.030 0.000	9 0.00 9 0.02	370.1973950.0003

1590 . pcorr psae_read_trend i.year pct_ell if hs==1
 (obs=396)

Partial and semipartial correlations of psae_read_trend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_ell	(dropped) -0.0344 -0.0565 0.1795 0.0034	-0.0331 -0.0544 0.1752 0.0032	0.001 0.003 0.032 0.032	2 0.00 2 0.03	30 0.2637 07 0.0003

1591 . pcorr psae_read_trend i.year pct_sped if hs==1
 (obs=426)

Partial and semipartial correlations of psae_read_trend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_sped	(dropped) -0.0344 -0.0651 0.1775 -0.0853	-0.0330 -0.0625 0.1730 -0.0821	0.001 0.004 0.031 0.007	2 0.00 5 0.02	39 0.1817 99 0.0002

Source	SS	df	MS		of obs =		396
Model Residual	1415.84415 14114.9474	8 387	176.980519 36.4727324	Prok R-sc	387) > F quared	= 0	4.85 .0000 .0912
Total	15530.7916	395	39.3184597	-	R-squared MSE		.0724 .0393
psae_read_~d	Coef.	Std. Err.	t P>	· t	[95% Conf.	Interval	.]
pct_black pct_hisp pct_frl pct_ell pct_sped	0487125 0441717 5.259853 -4.743808 -11.09331	.0372473 .0399341 4.517277 8.41177 6.682354	-1.31 -1.11 1.16 -0.56 -1.66	0.192 0.269 0.245 0.573 0.098	121944 122686 -3.62162 -21.282 -24.2315	6 .03 3 14. 3 11.	45199 43431 14133 79468 44953
year 2011 2012 2013	3050651 -1.024712 3.248455	.9596443 .8919186 .8800677	-0.32 -1.15 3.69	0.751 0.251 0.000	-2.19183 -2.77832 1.51814	5.72	81704 89004 78767
_cons	1.173284	2.17031	0.54	0.589	-3.09379	1 5.4	40358

1592 . reg psae_read_trend pct_black pct_hisp pct_frl pct_ell pct_sped i.year if hs==1

1593 .

1594 . 1595 . pcorr psae_math i.year pct_black if hs==1

(obs=611)

Partial and semipartial correlations of psae_math with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2009b.year 2010.year 2011.year 2012.year 2013.year pct_black	(dropped) 0.0027 0.0235 0.0476 0.0488 -0.4805	0.0024 0.0205 0.0417 0.0427 -0.4791	0.000 0.000 0.002 0.002 0.230	6 0.00 3 0.00 4 0.00	040.5635170.2415180.2296

1596 . pcorr psae_math i.year pct_blackhisp if hs==1 (obs=611)

Partial and semipartial correlations of psae_math with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2009b.year 2010.year 2011.year 2012.year 2013.year pct_black~p	(dropped) 0.0131 0.0459 0.0646 0.0740 -0.6209	0.0103 0.0359 0.0506 0.0580 -0.6191	0.000 0.002 0.004 0.005 0.385	1 0.00 2 0.00 5 0.00	13 0.2592 26 0.1118 34 0.0684

1597 . pcorr psae_math i.year pct_frl if hs==1 (obs=508)

Partial and semipartial correlations of psae_math with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_frl	(dropped) -0.0648 0.1000 0.0945 -0.6580	-0.0488 0.0755 0.0713 -0.6564	0.0042 0.010 0.008 0.433	0 0.00 9 0.00	570.0247510.0337

1598 . pcorr psae_math i.year pct_ell if hs==1
 (obs=466)

Partial and semipartial correlations of psae_math with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_ell	(dropped) 0.0169 0.0045 0.0159 -0.0151	0.0169 0.0045 0.0159 -0.0151	0.000 0.000 0.000 0.000	0 0.00 3 0.00	00 0.9236 03 0.7322

1599 . pcorr psae_math i.year pct_sped if hs==1
 (obs=508)

Partial and semipartial correlations of psae_math with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_sped	(dropped) 0.0397 0.0622 0.0964 -0.5968	0.0318 0.0499 0.0775 -0.5953	0.001 0.003 0.009 0.356	9 0.00 3 0.00	250.1629600.0304

1600 . reg psae_math pct_black pct_hisp pct_frl pct_ell pct_sped i.year if hs==1

Source	SS	df	MS	Number of obs	=	466
Model	179040.045	8	22380.0057	- F(8, 457) ' Prob > F	=	104.44 0.0000
Residual	97925.2438	457	214.278433	R-squared Adj R-squared	=	0.6464 0.6402
Total	276965.289	465	595.624278		=	14.638
psae_math	Coef.	Std. Err.	t P>	· t [95% Cor	nf. Ir	nterval]
pct_black	3279472	.0824245	-3.98	0.0004899	252	1659693
pct_hisp	0579557	.0886336	-0.65	0.5142321	356	.1162241
pct_frl	-70.58248	9.486336	-7.44	0.000 -89.22	473	-51.94023
pct_ell	-89.60624	19.16219	-4.68	0.000 -127.2	632	-51.9493
pct_sped	-132.2654	14.31146	-9.24	0.000 -160.3	898	-104.1409
year						
2011	4750719	2.14064	-0.22	0.824 -4.681	789	3.731646
2012	4.233437	1.986273	2.13	0.034 .3300	757	8.136798
2013	4.683451	1.977309	2.37	0.018 .7977	054	8.569197
cons	129.5718	4.977789	26.03	0.000 119.7	896	139.354

1601 .

1602 . pcorr psae_math_trend i.year pct_black if hs==1
 (obs=426)

Partial and semipartial correlations of psae_math_trend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_black	(dropped) 0.1353 0.1331 0.0897 -0.1438	0.1336 0.1314 0.0881 -0.1422	0.018 0.017 0.008 0.020	7 0.01 0 0.00	730.0061780.0654

1603 . pcorr psae_math_trend i.year pct_blackhisp if hs==1
 (obs=426)

Partial and semipartial correlations of psae_math_trend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_black~p	(dropped) 0.1344 0.1340 0.0910 -0.0567	0.1338 0.1334 0.0902 -0.0561	0.018 0.017 0.008 0.003	9 0.01 3 0.00	780.0058810.0615

1604 . pcorr psae_math_trend i.year pct_frl if hs==1
 (obs=426)

Partial and semipartial correlations of psae_math_trend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_frl	(dropped) 0.1278 0.1353 0.0917 -0.0412	0.1273 0.1348 0.0909 -0.0407	0.016 0.018 0.008 0.001	3 0.01 4 0.00	82 0.0053 83 0.0595

1605 . pcorr psae_math_trend i.year pct_ell if hs==1
 (obs=396)

Partial and semipartial correlations of psae_math_trend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_ell	(dropped) 0.1246 0.1068 0.0628 0.0032	0.1244 0.1064 0.0623 0.0031	0.015 0.011 0.003 0.000	4 0.01 9 0.00	130.0343390.2142

1606 . pcorr psae_math_trend i.year pct_sped if hs==1 (obs=426)

Partial and semipartial correlations of psae_math_trend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_sped	(dropped) 0.1371 0.1327 0.0933 -0.1172	0.1359 0.1315 0.0920 -0.1158	0.0188 0.0176 0.008 0.013	6 0.01 [°] 7 0.00	73 0.0063 85 0.0551

1607 . reg psae_math_trend pct_black pct_hisp pct_frl pct_ell pct_sped i.year if hs==1

Source	SS	df	MS		of obs = 387)	396 = 2.71
Model Residual	744.856507 13282.9837	8 387	93.1070634 34.3229553	l Prok B R-sc	o > F quared	= 0.0064 = 0.0531
Total	14027.8402	395	35.5135195	5	R-squared MSE	= 0.0335 = 5.8586
psae_math_~d	Coef.	Std. Err.	t P>	• t	[95% Conf.	Interval]
pct_black pct_hisp pct_frl pct_ell pct_sped	0040884 .0300069 .6632329 -13.90754 -10.53466	.0361329 .0387393 4.382127 8.160102 6.482427	-0.11 0.77 0.15 -1.70 -1.63	0.910 0.439 0.880 0.089 0.105	0751298 0461589 -7.952523 -29.95123 -23.27985	9.106172739.27898822.136145
year 2011 2012 2013	2.322544 1.944708 1.245813	.9309331 .8652337 .8537373	2.49 2.25 1.46	0.013 0.025 0.145	.4922249 .2435606 4327304	3.645855

0.58 0.561

-2.914965

5.363854

1608 .

_cons

Partial and semipartial correlations of psae_sci with

1.224444 2.105378

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2009b.year 2010.year 2011.year 2012.year 2013.year pct_black	(dropped) 0.0215 0.0049 0.0663 0.0127 -0.4566	0.0191 0.0043 0.0589 0.0113 -0.4552	0.000 0.000 0.004 0.000 0.208	0 0.00 4 0.00 2 0.00	00 0.9047 35 0.1027 01 0.7546

^{1609 .} pcorr psae_sci i.year pct_black if hs==1
 (obs=611)

1610 . pcorr psae_sci i.year pct_blackhisp if hs==1
 (obs=611)

Partial and semipartial correlations of psae_sci with

	Partial	Semipartial	Partial	Semipartial	Significance
Variable	Corr.	Corr.	Corr.^2	Corr.^2	Value
2009b.year	(dropped)				
-		0 0070	0 001	F 0.00	0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2010.year	0.0393	0.0279	0.001		
2011.year	0.0305	0.0216	0.000	9 0.00	05 0.4531
2012.year	0.0952	0.0678	0.009	1 0.00	46 0.0190
2013.year	0.0361	0.0256	0.001	3 0.00	07 0.3748
pct_black~p	-0.7030	-0.7010	0.494	2 0.49	14 0.0000

1611 . pcorr psae_sci i.year pct_frl if hs==1
 (obs=508)

Partial and semipartial correlations of psae_sci with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_frl	(dropped) -0.1448 0.1196 0.0257 -0.7532	-0.0960 0.0790 0.0168 -0.7511	0.021 0.014 0.000 0.567	3 0.00 7 0.00	62 0.0071 03 0.5651

1612 . pcorr psae_sci i.year pct_ell if hs==1
 (obs=466)

Partial and semipartial correlations of psae_sci with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_ell	(dropped) -0.0225 -0.0011 -0.0423 -0.0692	-0.0225 -0.0011 -0.0422 -0.0691	0.000 0.000 0.001 0.004	0 0.00 8 0.00	00 0.9810 18 0.3634

1613 . pcorr psae_sci i.year pct_sped if hs==1
 (obs=508)

Partial and semipartial correlations of psae_sci with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_sped	(dropped) -0.0072 0.0621 0.0271 -0.5940	-0.0058 0.0499 0.0217 -0.5924	0.000 0.003 0.000 0.352	9 0.00 7 0.00	25 0.1637 05 0.5441

1614 . reg psae_sci pct_black pct_hisp pct_frl pct_ell pct_sped i.year if hs==1

Source	SS	df	MS	Number of obs	=	466
Model Residual	165493.754 57263.6988	8 457	20686.7192 125.303499		= = =	0.0000
Total	222757.453	465	479.048286	Adj R-square Root MSE	d = =	
psae_sci	Coef.	Std. Err.	t P>	t [95% Co	nf. I	nterval]
pct_black pct_hisp pct_frl pct_ell pct_sped	387056 1865103 -72.134 -80.61909 -108.5265	.0630302 .0677783 7.254223 14.65337 10.94401	-2.75 -9.94 -5.50	0.000510 0.006319 0.000 -86.3 0.000 -109. 0.000 -130.	7061 8977 4154	2631911 0533146 -57.87823 -51.82275 -87.01969
year 2011 2012 2013	-3.439505 3.592535 .5179818	1.636952 1.518908 1.512053	2.37	0.036 -6.65 0.018 .607 0.732 -2.45	6259	2226188 6.577444 3.48942
_cons	132.7123	3.806527	34.86	0.000 125.	2319	140.1928

Partial and semipartial correlations of psae_sci_trend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_black	(dropped) -0.0137 0.1436 -0.1649 -0.1106	-0.0130 0.1371 -0.1579 -0.1051	0.000 0.020 0.027 0.012	6 0.01 2 0.02	88 0.0031 49 0.0007

1617 . pcorr psae_sci_trend i.year pct_blackhisp if hs==1 (obs=426)

Partial and semipartial correlations of psae_sci_trend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_black~p	(dropped) -0.0124 0.1450 -0.1625 -0.0810	-0.0118 0.1389 -0.1560 -0.0770	0.000 0.021 0.026 0.006	0 0.01 4 0.02	930.0028430.0008

<sup>1615 .
1616 .</sup> pcorr psae_sci_trend i.year pct_black if hs==1

1618 . pcorr psae_sci_trend i.year pct_frl if hs==1 (obs=426)

Partial and semipartial correlations of psae_sci_trend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_frl	(dropped) -0.0213 0.1471 -0.1609 -0.0633	-0.0202 0.1411 -0.1546 -0.0602	0.000 0.021 0.025 0.004	6 0.01 9 0.02	99 0.0024 39 0.0009

1619 . pcorr psae_sci_trend i.year pct_ell if hs==1
 (obs=396)

Partial and semipartial correlations of psae_sci_trend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_ell	(dropped) -0.0110 0.1321 -0.1651 0.0063	-0.0105 0.1265 -0.1589 0.0060	0.000 0.017 0.027 0.000	4 0.01 3 0.02	60 0.0087 53 0.0010

1620 . pcorr psae_sci_trend i.year pct_sped if hs==1
 (obs=426)

Partial and semipartial correlations of psae_sci_trend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_sped	(dropped) -0.0104 0.1436 -0.1614 -0.1416	-0.0098 0.1365 -0.1539 -0.1346	0.000 0.020 0.026 0.020	6 0.01 1 0.02	86 0.0031 37 0.0009

1621 . reg psae_sci_trend pct_black pct_hisp pct_frl pct_ell pct_sped i.year if hs==1

Source	SS	df	MS	Number of obs	=	396 = 6.75
Model Residual	1555.75152 11152.956	8 387	194.46894 28.8190076	R-squared	=	= 0.0000 = 0.1224
Total	12708.7075	395	32.173943	- Adj R-squared Root MSE	=	= 5.3683
psae_sci_t~d	Coef.	Std. Err.	t P>	t [95% Conf	Ē. I	Interval]
pct_black pct_hisp pct_frl pct_ell pct_sped	0279672 0104793 2.192877 -7.922491 -10.97519	.0331093 .0354976 4.015431 7.477265 5.939978	-0.30 0.55	0.39909306 0.76808027 0.585 -5.7019 0.290 -22.623 0.065 -22.653	715 912 364	.0371295 .059313 10.08767 6.778655 .703475
year 2011 2012 2013 _cons	01854 2.148597 -2.463797 3.220098	.8530327 .792831 .7822966 1.9292	-0.02 2.71 -3.15 1.67	0.983 -1.6956 0.007 .58980 0.002 -4.001 0.09657292)24 L88	1.658618 3.707393 9257134 7.013122

1622 .

```
1623 . pcorr attend i.year pct_black if hs==1
  (obs=707)
```

Partial and semipartial correlations of attend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2009b.year 2010.year 2011.year 2012.year 2013.year pct_black	(dropped) 0.0478 0.0071 0.0534 0.1184 -0.3258	0.0447 0.0066 0.0501 0.1116 -0.3226	0.002 0.000 0.002 0.014 0.106	0 0.00 9 0.00 0 0.01	000.8519250.1571250.0017

1624 . pcorr attend i.year pct_blackhisp if hs==1
 (obs=707)

Partial and semipartial correlations of attend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2009b.year 2010.year 2011.year 2012.year 2013.year pct_black~p	(dropped) 0.0476 0.0092 0.0545 0.1222 -0.2809	0.0453 0.0087 0.0519 0.1169 -0.2781	0.002 0.000 0.003 0.014 0.078	1 0.00 0 0.00 9 0.01	01 0.8080 27 0.1487 37 0.0012

1625 . pcorr attend i.year pct_frl if hs==1
 (obs=587)

Partial and semipartial correlations of attend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_frl	(dropped) -0.0819 0.0269 0.0979 -0.3223	-0.0771 0.0252 0.0923 -0.3194	0.006 0.000 0.009 0.103	7 0.00 6 0.00	06 0.5168 85 0.0180

1626 . pcorr attend i.year pct_ell if hs==1
 (obs=532)

Partial and semipartial correlations of attend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_ell	(dropped) -0.0316 0.0006 0.0782 0.1159	-0.0312 0.0006 0.0774 0.1150	0.001 0.000 0.006 0.013	0 0.00 1 0.00	00 0.9882 60 0.0723

1627 . pcorr attend i.year pct_sped if hs==1 (obs=587)

Partial and semipartial correlations of attend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_sped	(dropped) -0.0379 0.0124 0.0929 -0.1192	-0.0373 0.0122 0.0918 -0.1181	0.001 0.000 0.008 0.014	2 0.00 6 0.00	01 0.7657 84 0.0247

1628 . reg attend pct_black pct_hisp pct_frl pct_ell pct_sped i.year if hs==1

Source	SS	df	MS	Number of obs	=	5
				F(8, 523)	=	17.
Model	11289.8127	8	1411.22659	Prob > F	=	0.00
Residual	41171.0815	523	78.7209971	R-squared	=	0.21
				Adj R-squared	=	0.20
Total	52460.8942	531	98.7964109	Root MSE	=	8.87

attend	Coef.	Std. Err.	t I	₽> t	[95% Conf. In	nterval]
pct_black pct_hisp	.0204288	.0446837	0.46	0.648	0673529	.1082104
pct_msp pct frl	-27.90253	4.609362	-6.05	0.000	-36.95767	-18.84739
pct_ell	.0278994	10.53644	0.00	0.998	-20.67105	20.72685
pct_sped	-2.907435	3.460333	-0.84	0.401	-9.705293	3.890424
year						
2011	-1.876397	1.202573	-1.56	0.119	-4.238865	.48607
2012	1.596264	1.130537	1.41	0.159	6246874	3.817216
2013	3.384378	1.140408	2.97	0.003	1.144035	5.624721
_cons	104.6738	2.892335	36.19	0.000	98.99178	110.3558

1629 .

1630 . pcorr attend_trend i.year pct_black if hs==1

(obs=523)

Partial and semipartial correlations of attend_trend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_black	(dropped) -0.0218 -0.0153 0.0361 0.0220	-0.0217 -0.0152 0.0360 0.0220	0.000 0.000 0.001 0.000	2 0.00 3 0.00	02 0.7281 13 0.4120

1631 . pcorr attend_trend i.year pct_blackhisp if hs==1
 (obs=523)

Partial and semipartial correlations of attend_trend with

	Partial	Semipartial	Partial	Semipartial	Significance
Variable	Corr.	Corr.	Corr.^2	Corr.^2	Value
0.01.01					
2010b.year	(dropped)				
2011.year	-0.0222	-0.0221	0.000	5 0.00	0.6140
2012.year	-0.0152	-0.0152	0.000	2 0.00	0.7294
2013.year	0.0361	0.0360	0.001	3 0.00	13 0.4113
pct_black~p	0.0370	0.0369	0.001	4 0.00	14 0.4002

1632 . pcorr attend_trend i.year pct_frl if hs==1
 (obs=523)

Partial and semipartial correlations of attend_trend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_frl	(dropped) -0.0163 -0.0169 0.0351 0.0442	-0.0162 -0.0169 0.0350 0.0441	0.000 0.000 0.001 0.002	3 0.00 2 0.00	03 12 0.6999 0.4247

1633 . pcorr attend_trend i.year pct_ell if hs==1
 (obs=478)

Partial and semipartial correlations of attend_trend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_ell	(dropped) -0.0066 -0.0066 0.0447 -0.0173	-0.0066 -0.0066 0.0446 -0.0172	0.000 0.000 0.002 0.002	0 0.00 0 0.00	00 0.8857 20 0.3310

1634 . pcorr attend_trend i.year pct_sped if hs==1
 (obs=523)

Partial and semipartial correlations of attend_trend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_sped	(dropped) -0.0198 -0.0139 0.0371 -0.0232	-0.0198 -0.0139 0.0370 -0.0231	0.000 0.000 0.001 0.000	2 0.00 4 0.00	02 0.7516 14 0.3985

Source	SS	df	MS		of obs = 469)	=	478 0.45
Model	83.5402672	8	10.4425334	. ,	,	_	0.8881
Residual	10792.7333	469	23.0122245	R-sq	uared	=	0.0077
				- Adj	R-squared	=	-0.0092
Total	10876.2736	477	22.8014121	. Root	MSE	=	4.7971
	1						
attend_trend	Coef.	Std. Err.	t P>	· t	[95% Conf.	Inte	erval]
pct_black	.0081748	.0250748	0.33	0.745	041098	1	.0574478
pct_hisp	.0064351	.027104	0.24	0.812	046825	2	.0596955
pct_frl	.7857353	2.631652	0.30	0.765	-4.38555	3	5.957023
pct_ell	.4661259	5.954652	0.08	0.938	-11.2349	7	12.16722
pct_sped	-1.500576	1.909956	-0.79	0.432	-5.25370	6	2.252553
year							
2011	0293254	.6955609	-0.04	0.966	-1.39612	7	1.337476
2012	0851663	.6511857	-0.13	0.896	-1.36476	9	1.194437
2013	.6555192	.6541115	1.00	0.317	629832	8	1.940871
CONS	.0653926	1,610373	0.04	0.968	-3,09904	7	3.229832
2012	0851663	.6511857	-0.13	0.896	-1.36476	9 8	1.194 1.94(

1635 . reg attend_trend pct_black pct_hisp pct_frl pct_ell pct_sped i.year if hs==1

Partial and semipartial correlations of ap_enroll_trend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2009b.year 2010.year 2011.year 2012.year 2013.year pct_black	(dropped) -0.0298 -0.0187 -0.0278 -0.0722 -0.0489	-0.0297 -0.0186 -0.0277 -0.0721 -0.0487	0.000 0.000 0.000 0.005 0.005	3 0.00 8 0.00 2 0.00	03 0.6782 08 0.5368 52 0.1081

1638 . pcorr ap_enroll_trend i.year pct_blackhisp if hs==1 (obs=500)

Partial and semipartial correlations of ap_enroll_trend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2009b.year 2010.year 2011.year 2012.year 2013.year pct_black~p	(dropped) -0.0296 -0.0189 -0.0270 -0.0709 -0.0213	-0.0296 -0.0188 -0.0269 -0.0708 -0.0213	0.000 0.000 0.000 0.005 0.000	4 0.00 7 0.00 0 0.00	04 0.6753 07 0.5486 50 0.1149

<sup>1636 .
1637 .</sup> pcorr ap_enroll_trend i.year pct_black if hs==1

1639 . pcorr ap_enroll_trend i.year pct_frl if hs==1
 (obs=417)

Partial and semipartial correlations of ap_enroll_trend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_frl	(dropped) 0.0037 0.0065 -0.0445 -0.0756	0.0037 0.0065 -0.0443 -0.0754	0.000 0.000 0.002 0.005	0 0.00	00 0.8949 20 0.3664

1640 . pcorr ap_enroll_trend i.year pct_ell if hs==1
 (obs=385)

Partial and semipartial correlations of ap_enroll_trend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_ell	(dropped) 0.0181 0.0051 -0.0395 -0.0815	0.0180 0.0050 -0.0393 -0.0813	0.000 0.000 0.001 0.006	0 0.00 6 0.00	00 0.9213 15 0.4414

1641 . pcorr ap_enroll_trend i.year pct_sped if hs==1
 (obs=417)

Partial and semipartial correlations of ap_enroll_trend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_sped	(dropped) 0.0207 0.0123 -0.0340 -0.1073	0.0206 0.0122 -0.0338 -0.1071	0.000 0.000 0.001 0.011	2 0.00 2 0.00	01 0.8025 11 0.4900

1642 . reg ap_enroll_trend pct_black pct_hisp pct_frl pct_ell pct_sped i.year if hs==1

Source	SS	df	MS	Number of obs =	
Model Residual	736.836641 22903.54	8 376	92.1045802 60.9136702		$= 1.51 \\ = 0.1512 \\ = 0.0312 \\ = 0.0106$
Total	23640.3766	384	61.5634808	5 1	= 7.8047
ap_enroll_~d	Coef.	Std. Err.	t P>	• t [95% Conf.	. Interval]
pct_black pct_hisp pct_frl pct_ell pct_sped	0013833 .0323906 -3.2535 -17.0377 -1.602757	.0431281 .0465805 4.605086 10.33568 3.222546	-0.03 0.70 -0.71 -1.65 -0.50	0.974 086185 0.487 059200 0.480 -12.3084 0.100 -37.3606 0.619 -7.93922	.1239815.1239815.5.801449.285272
year 2011 2012 2013 _cons	.4621053 .4203682 6136003 5.999701	1.20879 1.144356 1.181868 2.745917	0.38 0.37 -0.52 2.18	0.702 -1.91472 0.714 -1.82977 0.604 -2.937 0.030 .600423	71 2.670507 75 1.710299

1643 .

```
1644 . pcorr ap_success_trend i.year pct_black if hs==1
   (obs=400)
```

Partial and semipartial correlations of ap_success_trend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2009b.year 2010.year 2011.year 2012.year 2013.year pct_black	(dropped) 0.0017 0.0358 0.1093 0.1439 -0.1205	0.0016 0.0349 0.1071 0.1417 -0.1182	0.000 0.001 0.011 0.020 0.014	3 0.00 9 0.01 7 0.02	120.4778150.0297010.0041

1645 . pcorr ap_success_trend i.year pct_blackhisp if hs==1
 (obs=400)

Partial and semipartial correlations of ap_success_trend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2009b.year 2010.year 2011.year 2012.year 2013.year pct_black~p	(dropped) 0.0048 0.0401 0.1157 0.1490 -0.0849	0.0047 0.0392 0.1139 0.1473 -0.0833	0.0000 0.0016 0.0134 0.0222 0.0072	5 0.002 4 0.012 2 0.022	15 0.4265 30 0.0212 17 0.0030

1646 . pcorr ap_success_trend i.year pct_frl if hs==1
 (obs=329)

Partial and semipartial correlations of ap_success_trend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_frl	(dropped) 0.0343 0.1231 0.1596 -0.0374	0.0337 0.1219 0.1590 -0.0368	0.001 0.015 0.025 0.001	1 0.01 5 0.02	49 0.0263 53 0.0039

1647 . pcorr ap_success_trend i.year pct_ell if hs==1
 (obs=310)

Partial and semipartial correlations of ap_success_trend with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_ell	(dropped) 0.0344 0.1126 0.1481 0.0442	0.0339 0.1116 0.1476 0.0436	0.001 0.012 0.021 0.002	7 0.01 9 0.02	25 0.0487 18 0.0093

1648 . pcorr ap_success_trend i.year pct_sped if hs==1 (obs=329)

Partial and semipartial correlations of ap_success_trend with

Variable	Partial Corr.	Semipartial Corr.	Partial Corr.^2	Semipartial Corr.^2	Significance Value
			0011.2		Varac
2010b.year	(dropped)				
2011.year	0.0407	0.0400	0.001	7 0.00	16 0.4638
2012.year	0.1211	0.1196	0.014	7 0.01	43 0.0289
2013.year	0.1591	0.1581	0.025	3 0.02	50 0.0040
pct_sped	-0.0781	-0.0769	0.006	1 0.00	59 0.1593

1649 . reg ap_success_trend pct_black pct_hisp pct_frl pct_ell pct_sped i.year if hs==1

Source	SS	df	MS	Number of obs	=	310 2.06
Model	1314.34751	8	164.293438	F(8, 301) Prob > F	=	2.06 0.0394
Residual	23992.2874	301	79.7085959	1	=	0.0519
Total	25306.6349	309	81.8984947	Adj R-squared Root MSE	=	0.0267 8.928

ap_success~d	Coef.	Std. Err.	t I	₽> t	[95% Conf. In	terval]
pct_black	0495278	.0588793	-0.84	0.401	1653949	.0663393
pct_hisp	0009841	.0629863	-0.02	0.988	1249334	.1229651
pct_frl	2.968822	7.22375	0.41	0.681	-11.24663	17.18427
pct_ell	-14.82819	13.41007	-1.11	0.270	-41.21755	11.56117
pct_sped	-2.683142	11.04661	-0.24	0.808	-24.42151	19.05522
year						
2011	1.046591	1.521735	0.69	0.492	-1.947995	4.041177
2012	2.845555	1.424341	2.00	0.047	.0426271	5.648482
2013	3.942786	1.452237	2.71	0.007	1.084964	6.800608
_cons	2.354746	3.340099	0.70	0.481	-4.218156	8.927649

1650 .

1651 .

1652 . pcorr epas_gain_read i.year pct_black if hs==1

(obs=617)

Partial and semipartial correlations of epas_gain_read with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2009b.year 2010.year 2011.year 2012.year 2013.year pct_black	(dropped) -0.0034 -0.0615 -0.0306 -0.0162 -0.3506	-0.0032 -0.0576 -0.0286 -0.0151 -0.3497	0.000 0.003 0.000 0.000 0.122	8 0.00 9 0.00 3 0.00	330.1282080.4492020.6895

1653 . pcorr epas_gain_read i.year pct_blackhisp if hs==1
 (obs=617)

Partial and semipartial correlations of epas_gain_read with

	Partial	Semipartial	Partial	Semipartial	Significance
Variable	Corr.	Corr.	Corr.^2	Corr.^2	Value
2009b.year	(dropped)				
2010.year	0.0052	0.0046	0.000	0.00	00 0.8971
2011.year	-0.0579	-0.0507	0.0034	4 0.00	26 0.1521
2012.year	-0.0261	-0.0229	0.000	7 0.00	05 0.5185
2013.year	-0.0115	-0.0101	0.000	1 0.00	01 0.7761
pct_black~p	-0.4807	-0.4794	0.231	1 0.22	98 0.0000

1654 . pcorr epas_gain_read i.year pct_frl if hs==1
 (obs=515)

Partial and semipartial correlations of epas_gain_read with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_frl	(dropped) -0.1435 -0.0066 0.0002 -0.5475	-0.1210 -0.0055 0.0001 -0.5460	0.020 0.000 0.000 0.299	0 0.00 0 0.00	00 0.8815 00 0.9972

1655 . pcorr epas_gain_read i.year pct_ell if hs==1
 (obs=467)

Partial and semipartial correlations of epas_gain_read with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_ell	(dropped) -0.0442 -0.0452 -0.0231 -0.0383	-0.0442 -0.0451 -0.0231 -0.0382	0.002 0.002 0.000 0.001	0 0.00 5 0.00	200.3318050.6190

1656 . pcorr epas_gain_read i.year pct_sped if hs==1
 (obs=515)

Partial and semipartial correlations of epas_gain_read with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_sped	(dropped) -0.0690 -0.0233 0.0197 -0.4839	-0.0603 -0.0203 0.0172 -0.4826	0.004 0.000 0.000 0.234	5 0.00 4 0.00	04 0.5990 03 0.6565

Source	SS	df	MS	Number		467
Model Residual	166816.43 188713.467	8 458	20852.0538 412.038137	R-sq	> F uared	= 50.61 = 0.0000 = 0.4692
Total	355529.897	466	762.939694	-	R-squared MSE	= 0.4599 = 20.299
 epas_gain_~d	Coef.	Std. Err.	t P>	t	[95% Conf.	Interval]
pct_black pct_hisp pct_frl pct_ell pct_sped	2188302 .0496714 -73.43999 -98.59992 -138.6636	.1157834 .1245746 13.108 26.10029 19.75717	0.40 -5.60 -3.78	0.059 0.690 0.000 0.000 0.000	4463628 1951373 -99.19927 -149.8911 -177.4895	.29448 -47.68071 -47.30875
year 2011 2012 2013	-6.882177 2637516 1.252963	2.901558 2.735009 2.756653	-0.10 0.45	0.018 0.923 0.650	-12.58419 -5.638474 -4.164294	5.110971 6.67022
_cons	154.2356	6.91395	22.31	0.000	140.6486	167.8226

1657 . reg epas_gain_read pct_black pct_hisp pct_frl pct_ell pct_sped i.year if hs==1

1658 .

(obs=617)

Partial and semipartial correlations of epas_math_gain with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2009b.year 2010.year 2011.year 2012.year 2013.year pct_black	(dropped) -0.0005 -0.0554 -0.0230 -0.0107 -0.3702	-0.0005 -0.0514 -0.0213 -0.0099 -0.3693	0.000 0.003 0.000 0.000 0.137	1 0.00 5 0.00 1 0.00	26 0.1710 05 0.5695 01 0.7924

1660 . pcorr epas_math_gain i.year pct_blackhisp if hs==1
 (obs=617)

Partial and semipartial correlations of epas_math_gain with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2009b.year 2010.year 2011.year 2012.year 2013.year pct_black~p	(dropped) 0.0055 -0.0494 -0.0156 -0.0018 -0.3195	0.0052 -0.0468 -0.0148 -0.0017 -0.3187	0.000 0.002 0.000 0.000 0.102	4 0.002 2 0.000 0 0.000	22 0.2217 02 0.6997 00 0.9643

1661 . pcorr epas_math_gain i.year pct_frl if hs==1
 (obs=515)

Partial and semipartial correlations of epas_math_gain with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_frl	(dropped) -0.1075 -0.0054 0.0035 -0.3849	-0.0996 -0.0050 0.0032 -0.3839	0.0110 0.0000 0.0000 0.1482	0 0.00	00 0.9032 00 0.9368

1662 . pcorr epas_math_gain i.year pct_ell if hs==1
 (obs=467)

Partial and semipartial correlations of epas_math_gain with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_ell	(dropped) -0.0415 -0.0327 -0.0151 0.1058	-0.0413 -0.0325 -0.0150 0.1057	0.001 0.001 0.000 0.011	1 0.00 2 0.00	11 0.4817 02 0.7455

1663 . pcorr epas_math_gain i.year pct_sped if hs==1
 (obs=515)

Partial and semipartial correlations of epas_math_gain with

Variable	Partial	Semipartial	Partial	Semipartial	Significance
	Corr.	Corr.	Corr.^2	Corr.^2	Value
2010b.year 2011.year 2012.year 2013.year pct_sped	(dropped) -0.0628 -0.0167 0.0209 -0.4337	-0.0565 -0.0150 0.0188 -0.4326	0.003 0.000 0.000 0.188	3 0.00 4 0.00	02 0.7062 04 0.6372

1664 . reg epas_math_gain pct_black pct_hisp pct_frl pct_ell pct_sped i.year if hs==1

Source	SS	df	MS	Number		467 = 28.55
Model	115469.531	8	14433.6914		> F	= 0.0000
Residual	231546.978	458	505.561088	1.		= 0.3327
	245016 51			5	-squared	= 0.3211
Total	347016.51	466	744.670622	2 Root	MSE	= 22.485
epas_math_~n	Coef.	Std. Err.	t P;	> t	[95% Conf.	Interval]
pct_black	.0968419	.1282521	0.76	0.451	1551930	.3488775
pct_hisp	.3877426	.13799	2.81	0.005	.1165700	.6589146
pct_frl	-72.03536	14.5196	-4.96	0.000	-100.5680	5 -43.50207
pct_ell	-37.10932	28.91103	-1.28	0.200	-93.92403	3 19.70539
pct_sped	-123.3243	21.88481	-5.64	0.000	-166.3314	4 -80.31722
year						
2011	-6.524469	3.214026	-2.03	0.043	-12.84054	42084027
2012	.4965553	3.029541	0.16	0.870	-5.456969	6.45008
2013	1.744134	3.053516	0.57	0.568	-4.25650	5 7.744774
_cons	117.8668	7.658511	15.39	0.000	102.816	7 132.917

year

1.43524

1.162908

.7929161

1.230696

.0181117

.5829607

.5069946

.3935981

.5564543

.0110636

0.89

0.35

-0.47

0.46

-6.57

0.374

0.729

0.640

0.646

0.000

2010

2011

2012

2013

_cons

1665 1666 1667	• • ***********	* * * * * * * * * * * * * * *	* * * * * * * * * * * * *	* * * * * * * * *	* * * *			
1668	. use chi_merg	ed_panel.dta, d	clear					
1669	. merge m:1 sc	hoolid using to	urnaround.dta	1				
	Result		# of	obs.				
	not matche from m from u	aster		3,675 3,672 3	(_merge= (_merge=			
	matched			184	(_merge=	=3)		
1671 1672 1673		round 0=1 if ye 87 changes made	e)		ear if hs	=0 & gov=	=3 & 1	evel3==1, or
	Iteration 0: Iteration 1: Iteration 2: Iteration 3: Iteration 4: Iteration 5:	log likelihood log likelihood log likelihood log likelihood log likelihood log likelihood	$\begin{array}{rcl} d &= & -198.33 \\ d &= & -196.83 \end{array}$	9045 3969 1982 1979				
	Logistic regre Log likelihood			I	Number of LR chi2(Prob > chi Pseudo R	7)	=	682 26.47 0.0004 0.0630
	turnaround	Odds Ratio	Std. Err.	Z	P> z	[95% Con	f. Int	erval]
	pct_black va_read va_math	1.017373 .7176363 1.207892	.0058375 .0911897 .1258641	3.00 -2.61 1.81	0.003 0.009 0.070	1.005 .559 .9847	426	1.028879 .9205898 1.481579

.6474209

.4948181

.2997068

.5073218

.0054702

3.181725

2.733033

2.09777

2.985508

.0599676

1675 . est store level3b, title("% Black & Value Added")

1676 . logit turnaround pct_blackhisp va_read va_math hs i.year if hs==0 & gov==3 & level3==1, or

Number of obs =

682

note: hs c	omitte	ed be	ecause of co	ollir	nearity
Iteration	0:	log	likelihood	=	-210.05558
Iteration	1:	log	likelihood	=	-200.40648
Iteration	2:	log	likelihood	=	-196.63689
Iteration	3:	log	likelihood	=	-195.77337
Iteration	4:	log	likelihood	=	-195.74631
Iteration	5:	log	likelihood	=	-195.74626
Iteration	6:	log	likelihood	=	-195.74626

Logistic regression

j			LR	chi2(7) =	28.62
			Pr	ob > chi2	2 =	0.0002
Log likelihood	= -195.74626		1	Pseudo R2	=	0.0681
turnaround	Odds Ratio	Std. Err.	Z	P> z	[95% Conf. In	terval]
pct_blackhisp	1.417126	.1896489	2.61	0.009	1.090173	1.842137
va_read	.711533	.08922	-2.71	0.007	.5564958	.9097629
va_math	1.214736	.126911	1.86	0.063	.9898097	1.490775
hs	1	(omitted)				
year						
2010	1.419715	.5720655	0.87	0.384	.6444881	3.12743
2011	1.397096	.6102888	0.77	0.444	.59347	3.288924
2012	1.00975	.5037421	0.02	0.984	.3798118	2.684477
2013	1.550365	.7071551	0.96	0.336	.6341363	3.790404
_cons	7.27e-17	9.67e-16	-2.79	0.005	3.43e-28	.0000154

Note: 1 failure and 0 successes completely determined.

1677 . est store level3c, title("% Black or Hispanic & Value Added")

1678 . xml_tab level3b(, or) level3c(, or), save("Logit Models Turnaround.xml") replace

note: results saved to E:\Current Work\Cla-Chicago Litigation\CPS/Logit Models Turnaround.xml
click here to open with Excel

1679 .

1680 . logit turnaround pct_black i.year if hs==1 & gov==3 & level3==1, or

Iteration 0: log likelihood = -94.251293 Iteration 1: log likelihood = -81.959442 Iteration 2: log likelihood = -79.2661 Iteration 3: log likelihood = -79.061686 Iteration 4: log likelihood = -79.058942 Iteration 5: log likelihood = -79.05894

Logistic regression	Number of obs	=	208
	LR chi2(5)	=	30.38
	Prob > chi2	=	0.0000
Log likelihood = -79.05894	Pseudo R2	=	0.1612

turnaround	Odds Ratio	Std. Err.	z	P> z	[95% Conf. In	terval]
pct_black	1.049528	.015688	3.23	0.001	1.019226	1.080731
year						
2010	1.014631	.6055903	0.02	0.981	.3149646	3.268544
2011	.7144859	.4486531	-0.54	0.592	.2086852	2.446221
2012	.8403341	.4937857	-0.30	0.767	.2656321	2.658419
2013	.6255253	.4101619	-0.72	0.474	.1730236	2.261437
_cons	.0037984	.0055747	-3.80	0.000	.000214	.0674317

1681 . est store level3b, title("% Black & Value Added")

1682 . logit turnaround pct_blackhisp i.year if hs==1 & gov==3 & level3==1, or

Iteration	0:	log	likelihood	=	-94.251293
Iteration	1:	log	likelihood	=	-90.126829
Iteration	2:	log	likelihood	=	-89.436225
Iteration	3:	log	likelihood	=	-89.425923
Iteration	4:	log	likelihood	=	-89.4259
Iteration	5:	log	likelihood	=	-89.4259

Logistic regression

Log likelihood = -89.4259

turnaround	Odds Ratio	Std. Err.	Z	P> z	[95% Conf. In	terval]
pct_blackhisp	1.170329	.0870219	2.12	0.034	1.011615	1.353944
year 2010	1.082175	.6075145	0.14	0.888	.3601204	3.251977
2011	.880259	.5271831	-0.21	0.831	.2721634	2.847025
2012	1.117307	.6267251	0.20	0.843	.3721456	3.354536
2013	.8465775	.5341083	-0.26	0.792	.2458335	2.915361
_cons	4.30e-08	3.16e-07	-2.31	0.021	2.41e-14	.0766299

1683 . est store level3c, title("% Black or Hispanic & Value Added")

1684 . xml_tab level3b(, or) level3c(, or), save("Logit Models Turnaround HS.xml") replace

note: results saved to E:\Current Work\Cla-Chicago Litigation\CPS/Logit Models Turnaround HS.xml click here to open with Excel

Number of obs

Pseudo R2

LR chi2(5)

LR CHIZ, Prob > chi2

=

=

=

=

208

9.65

0.0858

0.0512

1685 .

1686 . gen time_turn=year-yearofturnaround (3,675 missing values generated)

1687 . tab time_turn if yearofturnaround==2012, sum(pct_black)

time_turn	Summa Mean	ary of % Black Std. Dev.	Freq.
-3	89.09375	18.914314	16
-2	88.9	19.404158	16
-1	88.03125	19.64728	16
0	84.183333	21.344569	12
1	83.066667	21.652308	12
Total	86.991667	19.644243	72

1688 . tab time_turn if yearofturnaround==2012, sum(pct_blackhisp)

	-	% Black or His	-
time_turn	Mean	Std. Dev.	Freq.
-3	99.3125	1.7469496	16
-2	99.36875	1.7730263	16
-1	98.806251	2.0361638	16
0	98.166666	2.3026983	12
1	97.491667	2.355828	12
Total	98.718056	2.0853159	72

1689 . tab time_turn if yearofturnaround==2010, sum(pct_black)

time_turn	Summary of % Black Mean Std. Dev.	Freq.
-1	98.92 .89554453	5
0	98.98 .69785385	5
1	98.12 1.4149205	5
2	97.86 1.0549882	5
3	97.5 .9617692	5
Total	98.276 1.1155268	25

1690 . tab time_turn if yearofturnaround==2010, sum(pct_blackhisp)

		Summary of	% Black or Hisp	panic
	time_turn	Mean	Std. Dev.	Freq.
_				
	-1	99.559999	.51283673	5
	0	99.58	.47116772	5
	1	99.1	1.0606595	5
	2	98.98	.55407458	5
	3	99.1	.43011547	5
		·		
	Total	99.264	.64606454	25

1691 . tab time_turn if yearofturnaround==2009, sum(pct_black)

time_turn	Summary of % Black Mean Std. Dev.	Freq.
0	99.475 .22173558	4
1	99.8 .28284271	4
2	98.6 1.3490738	4
3	99.28 .50695167	5
4	98.3 .43588989	3
Total	99.14 .82167992	20

1692 . tab time_turn if yearofturnaround==2009, sum(pct_blackhisp)

		Summary of	% Black or His	panic
	time_turn	Mean	Std. Dev.	Freq.
-	0	99.85	.19148582	4
	1	99.875	.15000068	4
	2	99.225	1.1615367	4
	3	99.839999	.23021775	5
	4	99.266668	.32145447	3
-	Total	99.64	.57801837	20

1693 . 1694 . log close

name:	<unnamed></unnamed>
log:	E:\Current Work\C1a-Chicago Litigation\CPS\bbaker_cps_schoolacctblty_2.10.17.smcl
log type:	smcl
closed on:	9 Feb 2017, 09:42:04
crosed on.	5 Feb 2017, 05:42:04

ATTACHMENT C

Statistics/Data Analysis

User: Bruce Baker Project: CTU

```
(14,396 missing values generated)
         name: <unnamed>
         log: E:\Current Work\Cla-Chicago Litigation\ILLINOIS\bbaker_stu_teacher_link_2.10.17.smcl
     log type:
                smcl
    opened on:
                 9 Feb 2017, 09:32:15
 1 .
 2 . use "Chicago Teachers.dta", clear
 3 . egen rcdts_concat=concat(rcdt sch_num)
 4 . replace rcdts=rcdts_concat if rcdts==""
   (107,517 real changes made)
 5.
 6 . replace raceethnicity= race_ethnicity_desc if raceethnicity==""
   (107,436 real changes made)
 7 . replace hispanic=hisp if hispanic==.
   (52,165 real changes made)
 8 . replace housedpk12= enrollmentpkpghab if housedpk12==.
   (27,522 real changes made)
 9 . drop sch_pct_black sch_pct_blackhisp
10 . gen sch_pct_black=black/k12*100
   (14,396 missing values generated)
11 . gen sch_pct_blackhisp=(black+hispanic)/k12*100
   (14,396 missing values generated)
12 . keep schoolyear idnumber raceethnicity employerrcdt district fulltimeequivalent rcdts sch_num year k12
   > aces sch_pct_black sch_pct_blackhisp
13 . drop if k12==.
   (11,821 observations deleted)
14 . drop if raceeth==""
   (81 observations deleted)
15 . gen race=""
   (183,370 missing values generated)
16 . replace race="Asian-PacIsl" if raceeth=="Asian"
   variable race was str1 now str12
   (4,374 real changes made)
17 . replace race="Asian-PacIsl" if raceeth=="Asian or Pacific Islander"
   (1,786 real changes made)
18 . replace race="Native" if raceeth=="American Indian or Alaska Native"
   (437 real changes made)
19 . replace race="Native" if raceeth=="American Indian or Alaskan Native"
   (402 real changes made)
```

CTU Thursday February 9 09:36:58 2017 Page 2 20 . replace race="Black" if raceeth=="Black or African American" (33,588 real changes made) 21 . replace race="Black" if raceeth=="Black, Non-Hispanic" (16,454 real changes made) 22 . replace race="Hispanic" if raceeth=="Hispanic" (7,876 real changes made) 23 . replace race="Hispanic" if raceeth=="Hispanic or Latino" (20,816 real changes made) 24 . replace race="Multi/Other" if raceeth=="Two or More Races" (2,344 real changes made) 25 . replace race="White" if raceeth=="White" (63,625 real changes made) 26 . replace race="White" if raceeth=="White, Non-Hispanic" (25,360 real changes made) 27 . replace race="NA" if raceeth=="NULL" (278 real changes made) 28 . replace race="NA" if raceeth=="Unknow" (3,504 real changes made) 29 . replace race="NA" if raceeth=="Unknown" (2,404 real changes made) 30 . gen tch_black=0 31 . recode tch_black 0=1 if race=="Black" (tch_black: 50042 changes made) 32 . gen tch_blackhisp=0 33 . recode tch_blackhisp 0=1 if race=="Black" || race=="Hispanic" (tch_blackhisp: 78734 changes made) 34 . save chitch_0915.dta, replace file chitch_0915.dta saved 35 . 36 . logit tch_black sch_pct_black if year==2009, or Iteration 0: log likelihood = -15712.425Iteration 1: log likelihood = -12284.913 log likelihood = -12137.266 Iteration 2: Iteration 3: log likelihood = -12136.318 -12136.318 Iteration 4: log likelihood = Logistic regression Number of obs = LR chi2(1) = Prob > chi2 = Log likelihood = -12136.318 Pseudo R2 = tch_black Odds Ratio Std. Err. P>|z| z

 tch_black
 Odds Ratio
 Std. Err.
 z
 P>|z|
 [95% Conf. Interval]

 sch_pct_black
 1.029711
 .0004088
 73.75
 0.000
 1.02891
 1.030513

 _cons
 .0767014
 .002478
 -79.48
 0.000
 .0719952
 .0817152

25,184

0.0000

0.2276

7152.22

37 . est store black09, title("2009")

38 . logit tch_black sch_pct_black if year==2010, or

Iteration	0:	log	likelihood	=	-15148.097
Iteration	1:	log	likelihood	=	-11745.728
Iteration	2:	log	likelihood	=	-11580.088
Iteration	3:	log	likelihood	=	-11578.906
Iteration	4:	log	likelihood	=	-11578.905

Logistic regression Number of obs = 24,609 LR chi2(1) = 7138.38 Prob > chi2 = 0.0000 Log likelihood = -11578.905 Pseudo R2 = 0.2356

tch_black	Odds Ratio	Std. Err.	z	P> z	[95% Conf. Int	cerval]
sch_pct_black _cons	1.030367 .0718185	.0004197 .0023725			1.029545 .0673159	1.03119

39 . est store black10, title("2010")

40 . logit tch_black sch_pct_black if year==2011, or

Iteration	0:	log	likelihood	=	-14234.43
Iteration	1:	log	likelihood	=	-10973.438
Iteration	2:	log	likelihood	=	-10759.882
Iteration	3:	log	likelihood	=	-10758.305
Iteration	4:	log	likelihood	=	-10758.305

L	ogistic	regression

Log likelihood = -10758.305

tch_black	Odds Ratio	Std. Err.	Z	P> z	[95% Conf. In	terval]
sch_pct_black	1.031472	.0004466	71.56	0.000	1.030597	1.032348
_cons	.0576116	.0020545	-80.03		.0537223	.0617825

41 . est store black11, title("2011")

42 . logit tch_black sch_pct_black if year==2012, or

Iteration	0:	log	likelihood	=	-14242.864
Iteration	1:	log	likelihood	=	-10987.947
Iteration	2:	log	likelihood	=	-10766.354
Iteration	3:	log	likelihood	=	-10764.686
Iteration	4:	log	likelihood	=	-10764.686

Logistic regression

Log likelihood = -10764.686

Number of obs LR chi2(1)	=	24,748 6956.36
Prob > chi2	=	0.0000
Pseudo R2	=	0.2442

 Number of obs
 =
 24,260

 LR chi2(1)
 =
 6952.25

 Prob > chi2
 =
 0.0000

 Pseudo R2
 =
 0.2442

tch_black	Odds Ratio	Std. Err.	Z	P> z	[95% Conf. In	terval]
sch_pct_black	1.031445	.0004469		0.000	1.030569	1.032321
_cons	.0554544	.0019707		0.000	.0517233	.0594545

43 . est store black12, title("2012") 44 . *logit tch_black sch_pct_black if year==2013, or 45 . *est store black13, title("2013") 46 . logit tch_black sch_pct_black if year==2014, or Iteration 0: log likelihood = -15683.385 Iteration 1: log likelihood = -11985.003 Iteration 2: log likelihood = -11698.999 -11696.224 Iteration 3: log likelihood = Iteration 4: log likelihood = -11696.223 27,949 Logistic regression Number of obs = LR chi2(1) = 7974.32 Prob > chi2 0.0000 = Log likelihood = -11696.223 Pseudo R2 0.2542 = tch_black Odds Ratio Std. Err. z P>|z| [95% Conf. Interval] 1.032771 76.54 0.000 1.031919 sch_pct_black .0004351 1.033624 0.000 _cons .0499845 .0017054 -87.81 .0467514 .0534413

Page 4

47 . est store black14, title("2014")

CTU Thursday February 9 09:36:58 2017

48 . logit tch_black sch_pct_black if year==2015, or

Iteration	0:	log	likelihood	=	-15808.904
Iteration	1:	log	likelihood	=	-11990.688
Iteration	2:	log	likelihood	=	-11693.252
Iteration	3:	log	likelihood	=	-11690.213
Iteration	4:	log	likelihood	=	-11690.212

Logistic regress	sion			umber of o R chi2(bs = 1) =	28,133 8237.38
Log likelihood :	= -11690.212		P	rob > chi2 Pseudo R2	= =	0.0000 0.2605
tch_black	Odds Ratio	Std. Err.	Z	P> z	[95% Conf.	Interval]
sch_pct_black _cons	1.033384 .0491488	.0004377 .0016763	77.53 -88.34	0.000 0.000	1.032527 .0459707	

49 . est store black15, title("2015")

50 . xml_tab black09(, or) black10(, or) black11(, or) black12(, or) black14(, or) black15(, or), save("Blac

note: results saved to E:\Current Work\Cla-Chicago Litigation\ILLINOIS/Black Teachers & Students.xml
click here to open with Excel

51 .

52 . *logit tch_blackhisp sch_pct_blackhisp if year==2009, or 53 . logit tch_blackhisp sch_pct_blackhisp if year==2010, or

Iteration 0: log likelihood = -16981.978 Iteration 1: log likelihood = -16203.698 Iteration 2: log likelihood = -16202.382 Iteration 3: log likelihood = -16202.382

 Logistic regression
 Number of obs
 =
 24,609

 LR chi2(1)
 =
 1559.19

 Prob > chi2
 =
 0.0000

 Log likelihood = -16202.382
 Pseudo R2
 =
 0.0459

tch_blackhisp	Odds Ratio	Std. Err.	Z	₽> z	[95% Conf. In	terval]
sch_pct_blackhisp	1.024821	.0007096	35.41	0.000	1.023431	1.026212
_cons	.0851497	.0057342	-36.58	0.000	.074621	.097164

54 . est store blackhisp2010, title("2010")

55 . logit tch_blackhisp sch_pct_blackhisp if year==2011, or

Iteration	0:	log	likelihood	=	-16544.657
Iteration 3	1:	log	likelihood	=	-15579.746
Iteration 2	2:	log	likelihood	=	-15567.582
Iteration 3	3:	log	likelihood	=	-15567.555
Iteration (4:	log	likelihood	=	-15567.555

Logistic regression	Number of obs	=	24,260
	LR chi2(1)	=	1954.20
	Prob > chi2	=	0.0000
Log likelihood = -15567.555	Pseudo R2	=	0.0591

tch_blackhisp	Odds Ratio	Std. Err.	Z	P> z	[95% Conf. In	terval]
sch_pct_blackhisp	1.030581	.0007993	38.84	0.000	1.029016	1.032149
_cons	.0435196	.0032972	-41.37	0.000	.0375141	.0504864

56 . est store blackhisp2011, title("2011")

Iteration 0: log likelihood = -16788.995

57 . logit tch_blackhisp sch_pct_blackhisp if year==2012, or

sch_pct_blackhis _cor	-				1.02161 .074386	
tch_blackhis	sp Odds Rat	io Std. Err.	Z	P> z	[95% Conf.	Interval]
Log likelihood =	= -16092.092			ni2(1) > chi2 udo R2	= = =	1393.81 0.0000 0.0415
Logistic regress	sion			er of obs	=	24,748
Iteration 4: 1	log likelihood	= -16092.09	2			
Iteration 3: 1	log likelihood	= -16092.09	2			
Iteration 2: 1	log likelihood	= -16092.10	3			
Iteration 1: 1	log likelihood	= -16104.01	9			

58 . est store blackhisp2012, title("2012")

59 . logit tch_blackhisp sch_pct_blackhisp if year==2013, or

Iteration 0: Iteration 1: Iteration 2: Iteration 3:	log likelihood = log likelihood = log likelihood = log likelihood =	-17557.142 -17416.736 -17411.811 -17411.811		
Logistic regre	ession		Number of obs LR chi2(1)	= =
Log likelihood	d = -17411.811		Prob > chi2 Pseudo R2	=

tch_blackhisp	Odds Ratio	Std. Err.	Z	P> z	[95% Conf. In	terval]
sch_pct_blackhisp	1.008097	.000574	14.16	0.000	1.006973	1.009223
_cons	.3331146	.0179823	-20.36	0.000	.2996704	.3702912

25,912 290.66 0.0000

0.0083

60 . est store blackhisp2013, title("2013")

61 . logit tch_blackhisp sch_pct_blackhisp if year==2014, or

Iteration	0:	log	likelihood	=	-18943.31
Iteration	1:	log	likelihood	=	-17763.598
Iteration	2:	log	likelihood	=	-17746.681
Iteration	3:	log	likelihood	=	-17746.637
Iteration	4:	log	likelihood	=	-17746.637

Logistic regression	Number of obs	=	27,949
	LR chi2(1)	=	2393.35
	Prob > chi2	=	0.0000
Log likelihood = -17746.637	Pseudo R2	=	0.0632

tch_blackhisp	Odds Ratio	Std. Err.	Z	₽> z	[95% Conf. In	terval]
sch_pct_blackhisp	1.030265	.0007174	42.82	0.000	1.02886	1.031672
_cons	.0434225	.002943	-46.28	0.000	.0380209	.0495913

62 . est store blackhisp2014, title("2014")

63 . logit tch_blackhisp sch_pct_blackhisp if year==2015, or

Iteration	0:	log	likelihood	=	-19053.802
Iteration	1:	log	likelihood	=	-17836.774
Iteration	2:	log	likelihood	=	-17815.971
Iteration	3:	log	likelihood	=	-17815.896
Iteration	4:	log	likelihood	=	-17815.896

Logistic regression

Log likelihood = -17815.896

tch_blackhisp	Odds Ratio	Std. Err.	Z	P> z	[95% Conf. In	terval]
sch_pct_blackhisp	1.031425	.00074	43.12	0.000	1.029975	1.032876
_cons	.0387317	.0027073	-46.51		.033773	.0444186

Number of obs

LR chi2(1) = Prob > chi2 = Pseudo R2 =

=

28,133

0.0650

2475.81 0.0000

64 . est store blackhisp2015, title("2015")

note: results saved to E:\Current Work\Cla-Chicago Litigation\ILLINOIS/Black & Hispanic Teachers & Studen click here to open with Excel

66 .

- 67 . use chitch_0915.dta, clear
- 68 . collapse (mean) sch_pct_black, by(tch_black year)
- 69 . export excel using "Teacher_Student_Match.xlsx", sheet("Black") sheetreplace firstrow(var)
 file Teacher_Student_Match.xlsx saved

70 .

- 71 . use chitch_0915.dta, clear
- 72 . collapse (mean) sch_pct_blackhisp, by(tch_blackhisp year)
- 73 . export excel using "Teacher_Student_Match.xlsx", sheet("BlackHisp") sheetreplace firstrow(var) file Teacher_Student_Match.xlsx saved

78 . drop schoolid turnaroundschool

79 . duplicates drop

Duplicates in terms of all variables

- (5 observations deleted)
- 80 . save turnaround_drop.dta, replace file turnaround_drop.dta saved

81 .

- 82 . use chitch_0915.dta, clear
- 83 . merge m:m rcdts using turnaround_drop.dta

Result	# of obs.	
not matched from master from using	•	(_merge==1) (_merge==2)
matched	7,969	(_merge==3)

- 84 . drop _merge
- 85 . gen time_turn=year-yearofturnaround
 (175,403 missing values generated)
- 86 . tab time_turn

time_turn	Freq.	Percent	Cum.
-3	608	7.63	7.63
-2	533	6.69	14.32
-1	699	8.77	23.09
0	783	9.83	32.92
1	1,091	13.69	46.61
2	1,134	14.23	60.84
3	1,093	13.72	74.55
4	650	8.16	82.71
5	638	8.01	90.71
б	401	5.03	95.75
7	264	3.31	99.06
8	55	0.69	99.75
9	20	0.25	100.00
Total	7,969	100.00	

87 . tab time_turn tch_black if yearofturnaround==2010, row

Кеу
frequency row percentage

tch_black			
time_turn	0	1	Total
-1	74	161	235
	31.49	68.51	100.00
0	67	149	216
	31.02	68.98	100.00
1	114	109	223
	51.12	48.88	100.00
2	128	103	231
	55.41	44.59	100.00
3	134	109	243
	55.14	44.86	100.00
4	126	125	251
	50.20	49.80	100.00
5	112	113	225
	49.78	50.22	100.00
Total	755	869	1,624
	46.49	53.51	100.00

88 . tab time_turn tch_blackhisp if yearofturnaround==2010, row

Кеу	
f	requency
row	percentage

tch_blackhisp				
time_turn	0	- 1	Total	
-1	69	166	235	
	29.36	70.64	100.00	
0	63	153	216	
	29.17	70.83	100.00	
1	106	117	223	
	47.53	52.47	100.00	
2	119	112	231	
	51.52	48.48	100.00	
3	126	117	243	
	51.85	48.15	100.00	
4	119	132	251	
	47.41	52.59	100.00	
5	105	120	225	
	46.67	53.33	100.00	
Total	707	917	1,624	
	43.53	56.47	100.00	

89 . tab time_turn tch_black if yearofturnaround==2009, row

Кеу	
frequency row percentage	

tch_black			
time_turn	0	1	Total
0	43	92	135
	31.85	68.15	100.00
1	68	62	130
	52.31	47.69	100.00
2	74	52	126
	58.73	41.27	100.00
3	66	45	111
	59.46	40.54	100.00
4	66	52	118
	55.93	44.07	100.00
5	62	67	129
	48.06	51.94	100.00

6	49	57	106
	46.23	53.77	100.00
Total	428	427	855
	50.06	49.94	100.00

90 . tab time_turn tch_blackhisp if yearofturnaround==2009, row

Key
frequency row percentage

tch_blackhisp			
time_turn	0	1	Total
0	39	96	135
	28.89	71.11	100.00
1	66	64	130
	50.77	49.23	100.00
2	67	59	126
	53.17	46.83	100.00
3	59	52	111
	53.15	46.85	100.00
4	58	60	118
	49.15	50.85	100.00
5	57	72	129
	44.19	55.81	100.00
6	45	61	106
	42.45	57.55	100.00
Total	391	464	855
	45.73	54.27	100.00

91 . 92 . 93 . 94 . tab time_turn tch_black if yearofturnaround==2012, row

Кеу frequency row percentage

	tch_bl	ack	
time_turn	0	1	Total
-3	273	335	608
	44.90	55.10	100.00
-2	230	303	533
	43.15	56.85	100.00
-1	225	239	464
	48.49	51.51	100.00
0	193	239	432
	44.68	55.32	100.00
1	249	206	455
	54.73	45.27	100.00
2	270	208	478
	56.49	43.51	100.00
3	234	198	432
	54.17	45.83	100.00
Total	1,674	1,728	3,402
	49.21	50.79	100.00

95 . tab time_turn tch_blackhisp if yearofturnaround==2012, row

Кеу	
frequency row percentage	

	tch_blac	khisp	
time_turn	0	1	Total
-3	229	379	608
	37.66	62.34	100.00
-2	181	352	533
	33.96	66.04	100.00
-1	183	281	464
	39.44	60.56	100.00
0	156	276	432
	36.11	63.89	100.00
1	196	259	455
	43.08	56.92	100.00
2	216	262	478
	45.19	54.81	100.00
3	184	248	432
	42.59	57.41	100.00
Total	1,345	2,057	3,402
	39.54	60.46	100.00

CTU Thursday February 9 09:36:59 2017 Page 12 96 . 97 . log close name: <unnamed> log: E:\Current Work\Cla-Chicago Litigation\ILLINOIS\bbaker_stu_teacher_link_2.10.17.smcl log type: smcl closed on: 9 Feb 2017, 09:34:46

ATTACHMENT D

Exhibit D

Data Relied on in the Report:

CPS Data:

- 2013_PerformancePolicy_Results_03262014.xls, http://schoolreports.cps.edu/cpsedu/schooldata/2013_PerformancePolicy_Results_03262 014.xls.
- Adopt A School Performance, Remediation and Probation Policy for the 2011-2012 School Year (July 28, 2010), <u>https://www.cpsboe.org/content/actions/2010_07/10-0728-PO4.pdf.</u>
- CPS Performance Policy, Overview of 2011-2012 Policy, http://cps.edu/SiteCollectionDocuments/PerformancePolicy_Tutorial.ppt
- SY14-15 School Quality Rating Policy (Aug. 28, 2013) http://www.cpsboe.org/content/documents/sy14-15_school_quality_rating_policy.pdf.
- Overview of Measures used in CPT Accountability (June 12, 2014) <u>http://cps.edu/Performance/Documents/OverviewAccountabilityMetrics_June2014.ppt.</u>
- School Quality Rating Policy (SQRP) Handbook: Guide to the Policy, Indicators, and Ratings (Sept. 15, 2016) <u>http://cps.edu/Performance/Documents/SQRPHandbook.pdf.</u>
- CBOE0026469.xls
- CBOE0026470.xlsx
- CBOE0026471.xls
- CBOE0026472.xls
- CBOE0026473.XLS
- CPS_Schools_2013-2014_Academic_Year.csv
- enrollment_20th_day_2013.xls
- enrollment_20th_day_2014-15.xls
- enrollment_20th_day_2014.xls
- enrollment_20th_day_2016_GV_20151023.xls
- FY08_Racial_Ethnic_Survey.xls
- FY09_Racial_Ethnic_Survey.xls
- FY10_Racial_Ethnic_Survey.xls
- FY11_Racial_Ethnic_Survey.xls
- FY12_Racial_Ethnic_Survey.xls
- FY13_Racial_Ethnic_Survey.xls
- FY14_Racial_Ethnic_Survey.xls
- FY15_Racial_Ethnic_Survey.xls
- FY16_Student_Racial_Ethnic_Report_20151023.xls
- lep_iep_frl_report_2010_revised_20130506.xls
- lep_iep_frl_report_2011.xls
- lep_iep_frl_report_2012.xls
- lep_iep_frl_report_2013.xls
- lep_iep_frl_report_2014.xls
- lep_sped_frl_report_2016_20151023.xls

- membership_20th_day_2009.xls
- membership_20th_day_2010.xls
- membership_20th_day_2011.xls
- membership_20th_day_2012.xls
- parent_survey_results_2011_CEdONews_112511.xlsx
- parent_survey_results_2014_FINAL.xlsx
- parent_survey_results_2015_FINAL_LOCKED.xlsx
- parent_survey_results_2016.xlsx
- ParentSurveyResults_2012.xlsm
- ParentSurveyResults_2013.xlsx
- PerformancePolicy_Results.xls
- SY14_SQRP_Report_CPSEDU_FINAL_20151026.xlsx
- SY15_SQRP_Report_CPSEDU_FINAL_20151023_full.xlsx
- SY2015_lep_sped_frl_report_20151022.xlsx

Illinois Data:

- ISBE data:
 - Educator Employment Information, archived at http://206.166.105.35/research/htmls/educator-employment.htm.
 - Fall enrollment counts, archived at http://206.166.105.35/research/htmls/fall_housing.htm.
- district_sum16.xls
- school_sum04.xls
- school_sum05.xls
- school_sum06.xls
- school_sum07.xls
- school sum08.xls
- school sum09.xls
- school_sum10.xls
- school sum11.xls
- school sum12.xls
- school sum13.xls
- school_sum14.xls
- school sum15.xls
- school sum16.xls
- Teacher_Student_Match.xlsx (created by Bruce Baker, merging above files, see code and log files provided).

Other Data:

- Jonathan Walker, Expert Report, Aug. 12, 2016.
- David Blanchflower, Expert Report, Sept. 15, 2016.

References:

Bruce D. Baker, Joseph Oluwole, & Preston C. Green III, *The legal consequences of mandating high stakes decisions based on low quality information: Teacher evaluation in the race-to-the-top era*, EDUC. POLICY ANALYSIS ARCHIVES, Vol. 21, no. 5, at 1.

- Bruce D. Baker, Not Making the Grade: How Financial Penalties for School Absences Hurt Districts Serving Low-Income, Chronically Ill Kids, ChangeLab Solutions, 2014 (http://www.changelabsolutions.org/sites/default/files/School-Financing_StatePolicymakers_FINAL_09302014.pdf).
- Bruce D. Baker, Eric Punswick, & Charles Belt, *School leadership stability, principal moves, and departures: Evidence from Missouri*, EDUC. ADMIN. QUARTERLY, vol. 46, no. 4, 2010, at 523.
- Bruce D. Baker, *Research Note: On Teacher Effect vs. Other Stuff in New Jersey's Growth Percentiles*, N.J. EDUC. POLICY FORUM, June 2, 2014 (https://njedpolicy.files.wordpress.com/2014/06/bbaker-sgps_and_otherstuff2.pdf).
- Matthew Clifford et. al., A Descriptive Analysis of the Principal Workforce in Wisconsin. Issues & Answers, REGIONAL EDUC. LABORATORY MIDWEST, No. 135, 2012.
- Richard J. Coley & Bruce Baker, *Poverty and education: Finding the way forward*, Educational Testing Service Center for Research on Human Capital and Education, 2013 (https://www.ets.org/s/research/pdf/poverty_and_education_report.pdf).
- Matthew Di Carlo, *Does it Matter How We Measure Schools' Test-Based Performance?* ALBERT SHANKER INSTITUTE, Sept. 19, 2012, <u>http://www.shankerinstitute.org/blog/does-it-matter-how-we-measure-schools-test-based-performance.</u>
- Matthew Di Carlo, *If Your Evidences is Changes in Proficiency Rates, You Probably Don't Have Much Evidence*, ALBERT SHANKER INSTITUTE, Mar. 22, 2012, <u>http://www.shankerinstitute.org/blog/if-your-evidence-changes-proficiency-rates-you-probably-dont-have-much-evidence</u>.
- Mark Ehlert, Cory Koedel, Eric Parsons, & Michael Podgursky, *Choosing the right growth measure*. EDUC. NEXT, vol. 14, no. 2., 2014, at 67.
- Ed Fuller, Michelle Young, & Bruce D. Baker, *Do principal preparation programs influence student achievement through the building of teacher-team qualifications by the principal? An exploratory analysis*, EDUC. ADMIN. QUARTERLY, vol. 47, no. 1, at 173.
- Larry Gabin, Setting Targets for Grades 3-2 Linked to the ACT's College Readiness Benchmarks, EVANSTON ROUNDTABLE (http://www.k12accountability.org/resources/Early-Intervention/Early-interventiontargets.pdf).
- Preston C. Green III, Bruce D. Baker, & Joseph O. Oluwole, *The legal and policy implications of value-added teacher assessment policies*, BYU EDUC. & L.J., Spring 2012, at 1.

- Memo from Howard T. Everson, on the Relationship of Regents ELA and Math Scores to College Readiness Indicators, to David Steiner (July 1, 2010) (http://usny.nysed.gov/scoring_changes/MemotoDavidSteinerJuly1.pdf).
- John P. Papay, Richard J. Murnane, & John B. Willett, *The consequences of high school exit* examinations for low-performing urban students: Evidence from Massachusetts. EDU. EVALUATION AND POLICY ANALYSIS, vol. 32, no. 1, 2010, at 5.
- Sean F. Reardon & Joseph P. Robinson, *Patterns and trends in racial/ethnic and socioeconomic academic achievement gaps, in* HANDBOOK OF RESEARCH IN EDUCATION FINANCE AND POLICY 497 (Helen F. Ladd & Edward B. Fiske, eds., 2008).
- Patrick Sharkey, Amy Ellen Schwartz, Ingrid Gould Ellen, & Johanna Lacoe, *High stakes in the classroom, high stakes on the street: The effects of community violence on students' standardized test performance.* SOCIOLOGICAL SCIENCE, May 2014, vol. 1, at 199.
- Scale Scores, Median Illinois Percentiles and Illinois Stanines for the 2010 ISAT Exam, http://evanstonroundtable.com/ftp/P.Zavitkovsky.2010.ISAT.chart.pdf.
- September 2013 presentation: Understanding Value-Added. Lesson 3: Technical Specifications of the Value-Added Regression Model, Office of Accountability, Chicago Public Schools (Lesson3TechnicalSpecifications.ppt).
- Mark Weber, Bruce Baker & Joseph Oluwole, "One Newark's" Racially Disparate Impact on Teachers, NEW JERSEY ED. POLICY FORUM, 2014.
- WHITHER OPPORTUNITY?: RISING INEQUALITY, SCHOOLS, AND CHILDREN'S LIFE CHANCES (Greg J. Duncan & Richard J. Murnane, Eds., 2011).